5.4. ПРОТИВОРЕЧИЯ В ГЕНОМЕ

Вскоре после формулирования Криком Центральной догмы молекулярной биологии (194), которая гласила, что белок синтезируется только на РНК-матрице, РНК — только на матрице ДНК, а ДНК реплицирует саму себя, оказалось, что на РНК-матрице может синтезироваться ДНК (это явление называется обратной транскрипцией); кроме того, — это было ясно давно — синтез нуклеиновых кислот требует, помимо полинуклеотидной матрицы, еще и участия белков. Пусть матрицей белок и не служит, но изменение белковых текстов способно повлечь изменение текстов и ДНК, и РНК, и самих белков (147). На транскрипцию гена влияет состояние хромосомных участков с данным геном внутри ядра. Например, ген в одной хромосоме читается, а в другой из-за её спирализации — нет. Читабельность последовательности нуклеотидов в ДНК зависит от белков ядра и цитоплазмы.

Предложенная потом догма "один ген — один фермент" тоже оказалась не верной. Функция гена может реализовываться через другой ген или продукт гена, например группы крови. Кроме того, на функцию данного белка влияет сложнейшая система клеточной сигнализации, система внутриклеточного транспорта, изменения белков после их синтеза и т. д.

Из-за наличия альтернативного сплайсинга (считывания) с одной и той же первичной матричной РНК (мРНК) может быть получено несколько тысяч вариантов зрелых мРНК. Это число варьирует от организма к организму. Однако пока до конца не ясна граница между интроном (сегментом незрелой матричной РНК, который потом вырезается сплайсеосомами) и экзоном (теми сегментами РНК, которые потом объединяются в зрелую матричную РНК). На первичной мРНК может быть несколько мест, с которых может начинаться зрелая мРНК, может быть несколько вариантов вырезаемых кусков. Из-за альтернативного сплайсинга могут получаться белки, у которых небольшие сегменты на концах или в центре будут отсутствовать. Такие белки называются функционально сходными изоформами одного и того же белка. В некоторых организмах мРНК может формироваться путем сплайсинга вместе (соединения в одну мРНК) экзонов из двух разных незрелых мРНК (248. С. 61).

Но даже зрелая мРНК может потом быть модифицирована путем включения нескольких дополнительных нуклеотидов или замены одного нуклеотида на другой (248. С. 61). Наиболее распространенной формой редактирования РНК у высших эукариот является превращение аденозина в инозин в двухцепочечных РНК, которое осуществляется ферментом аденозиндеаминазой. Поэтому белок может, оказывается, даже быть не записан в виде ДНК. Один ген дает сотни, тысячи вариантов белка. Миллионы генов могут дать один и тот же белок. Получается, что существуют белки без соответствующих генов. То есть один ген — много белков.

Многофункциональность белков — другая проблема для формальной генетики. Белок может функционировать в разных функциональных путях в зависимости от контекста (248. С. 64). В организме человека распространены белки с двумя функциями, совершенно независимыми друг от друга. Это, например, белок БАРС, который участвует в регулировании транскрипции генов и одновременно в цитоплазме участвует в функционировании белковой машины, обеспечивающей отщепление пузырьков от мембран (339).

Функция структурного или каталитического белка зависит не только от последовательности нуклеотидов, но и от окружающего генетического контекста, например, от структуры хромосомы, в которую ген попал, если хромосома в данной клетке конденсирована, то ген в одной хромосоме совсем не читается, а в другой может читаться. Если он есть в другой хромосоме, то он читается. Уровень синтеза определенного белка требует клеточной регуляции. Надо знать, какой белок и когда синтезировать. И это зависит от того, в каком состоянии находится ДНК, нет ли метилирования цитозина?

Наличие интенсивного редактирования незрелой матричной РНК (считывание и замена кодонов в РНК зависят от целостного генома. Все это наследуется), наличие регуляторных механизмов на этапе синтеза белков, наличие посттрансляционной модификации белков резко затрудняет не только структурное, но и функциональное определение гена. Все это резко затрудняет даже определение гена как структурной единицы генома. В результате всех этих открытий ген потерял свою спецификацию и свойство хранения информации стабильность. До сих пор гены называют мозгом клетки, а это в корне не верно.

Было обнаружено, что гены (даже в самом современном понимании) не автономны, имеется координированная программа синтеза белков и ее исполнение контролируется. ДНК сама по себе не может передавать информацию от одного поколения к другому без искажений (248. С. 145). Только 82,5 % глобальной вариабельности фенотипа зависит от генотипа (348). Между тем организм с огромной точностью проходит по стадиям своего индивидуального развития и это происходит несмотря на возмущения, поступающие из внешней среды. Это цепь реакций с обратной связью и чувствованием (тестированием) окружающей среды. Стадийность развития зачастую зависит от присутствия в нужном месте и в нужное время только нескольких молекул нужного белка (248. С.105).

Но и этими сведениями не исчерпываются сложности и противоречия в генетике. Оказалось, что в геноме человека имеется масса ДНК, которая не используется для синтеза белков. Белки кодируются генами, которые представляют собой не более 2 % от генома (295). Только 1,2 % нуклеотидов в геноме человека кодируют экзоны (259, 334). Только 1–2 % генома считывается и реализуется в виде различных молекул РНК (206). В геноме человека существуют обширные (размером до 3 мегабайт) области так называемых “пустынь”, которые не содержат генов вообще. Их роль остается неясной (262, 334).

В интронах и в молчащих зонах генома найдены так называемые псевдогены. Они имеют структуру нормальных генов, но не транскрибируются, то есть на них не синтезируется РНК (217). С другой стороны, открыта выраженная вариабельность в структуре генома. Вариабельность не в одном нуклеотиде, а в больших кусках цепи ДНК в размере от килобайт до мегабайт. Эта вариабельность не видна при цитологическом исследовании хромосом. Она была названа вариабельностью в числе копий гена (320).

Более того, обнаружено, что в клетке имеется большая коллекция транскриптов, так генетики сейчас называют РНК, только, что синтезированную на основе ДНК), которые не используются для синтеза белка. Были открыты так называемые транскрипты (РНК только что синтезированная на ДНК) неизвестной функции (219). В 2005 г. было открыто явление, слияния двух отдельных мРНК с образованием единой мРНК, из которой готовился один белок (175).

Наконец, установлено, что 1) изменение относительной концентрации мРНК часто не меняет уровень синтеза. И наоборот, концентрация белка в цитоплазме может меняться независимо от концентрации мРНК; 2) изменение концентрации отдельного белка не изменяет функциональную активность органеллы; 3) изменение специфической активности белка in vitro (ин витро, то есть в пробирке) часто не отражает соответствующих изменений в соответствующих реакциях в клетке (260).

Одна и та же наследственная информация может давать совершенно разный фенотип на уровне клеток. Нет разницы в фенотипе, если из генотипа удалить один ген, Это верно не для всех генов, но для большинства. Например, удаление гена Эпс15 (Eps15), который участвует в формировании особого белкового покрытия на поверхности мембран внутри клеток — клатрина, не вызывает практически никаких фенотипических изменений. Для их выявления нам пришлось предпринять можно сказать героические усилия чтобы выявить минимальную разницу в строении терминалей нервных клеток (мои собственные наблюдения).

Клетки с совершенно одинаковым генотипом могут выглядеть по разному. Об этом свидетельствуют эксперименты по выращиванию вне организма клеток разных органов и клонирование животных (см. ниже). С другой стороны, клетки, отличающиеся по своему генотипу, могут иметь почти идентичный фенотип. Отличия начинают проявляться при резком изменении факторов внешней среды (248).

Если добавить лишнюю копию гена, то опять никакой разницы не будет. Однако если добавить лишнюю хромосому, то возникает повреждения фенотипа, например трисомия по 21 хромосоме, одной из основных хромосом в геноме, вызывает синдром Дауна. Казалось бы лишние гены не мешают, но, значит, нужно иметь правильное соотношение между числом синтезируемых с разных генов белков.

Но и это ещё не все. Многие белки имеют перекрывающуюся функцию. Если, например, убрать из клетки белок синтаксин 5, один из белков группы СНАРЕ, то есть белков, участвующих в сближении мембран внутриклеточных мембранных органелл для их слияния между собой, то клетка выживает, так как СНАРЕ из других, ближайших, ступеней внутриклеточного транспорта ее замещают, смещаясь на место, где раньше работал синтаксин 5 (276).

Описан механизм транскрипционного сайленсинга и посттранскрипционного сайленсинга генов (на обыденном языке это звучит так. Описана возможность выключения гена в процессе считывания информации с ДНК на РНК и выключения гена в период уже после считывания информации с ДНК).

Шререр и Йост (309, 310) предложили все гены разделить на 1) структурные белковые гены из них синтезируются белки, ферменты, структурные белки, 2) гены, на основе которых синтезируются белки, участвующие в регуляции функции других белков, и нуклеиновых кислот, 3) структурные РНК гены, гены, на основе которых синтезируются молекулы РНК, для рибосом сплайсосом, тРНК и нуклеолярные РНК. Часто они обладают свойствами ферментов. 4) гены, на основе которых синтезируются РНК, играющие регуляторную функцию. Например, малые интерферирующие РНК (чаще всего это короткие РНК в виде двойной цепи). Гены регуляторы могут находится далеко от генов, которые они регулируют (206).

Итак, мой очень и очень краткий анализ литературы показывает, что в генетике почти ничего не осталось от тех бусинок-шариков, которыми обозначил гены Морган.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК