5.2. РАЗВИТИЕ ПРЕДСТАВЛЕНИЙ О ГЕНЕ. ИСТОРИЧЕСКАЯ СПРАВКА
Давайте посмотрим, кто был в то время более прав. Для этого нам придется понять, а что сейчас молекулярными биологами понимается под словом ген и есть ли вообще те неделимые кирпичики, кодирующие белки; кирпичики, которые Морган предлагал считать генами? Фенотип подавляющего большинства организмов одного и того же вида чрезвычайно стабилен и имеет замечательную воспроизводимость. Почему? Этот вопрос давно интересовал ученых-биологов.
Дарвин говорил о неких гипотетических элементах, геммулах или геммулесах (единицы пангенеза по его теории пангенеза), передающих наследственные свойства. По мнению Дарвина, от всех клеток организма отделяются мельчайшие частицы — "геммулы", которые, циркулируя с током крови по сосудистой системе организма, достигают половых клеток. Затем, после слияния этих клеток, в ходе развития организма следующего поколения геммулы превращаются в клетки того типа, из которого произошли, со всеми особенностями, приобретенными в течение жизни родителей. Отражением представлений о передаче наследственности через "кровь" является существование во многих языках выражений: "голубая кровь", "аристократическая кровь", "полукровка" и т. д. Мендель называл эти единицы элементами.
В 1871 году английский врач Ф. Гальтон (F. Galton), двоюродный брат Ч. Дарвина опроверг своего великого родственника. Он переливал кровь черных кроликов белым, а затем скрещивал белых между собой. В трех поколениях он "не нашел ни малейшего следа какого-либо нарушения чистоты серебристо-белой породы". Эти данные показали, что по крайней мере в крови кроликов геммулы отсутствуют".
В 80-е годы XIX-го века с теорией пангенезиса не согласился Август Вейсман (A. Weismann). Он предложил свою гипотезу, согласно которой в организме существуют два типа клеток: соматические и особая наследственная субстанция" названная им "зародышевой плазмой", которая в полном объеме присутствует только в половых клетках. Для объяснения феномена наследования Вейсман предположил существование особых самовоспроизводящихся элементов, которые детерминируют (определяют) свойства организма. Он назвал эти элементы детерминантами.
В 1889 г. ещё до своего переоткрытия "законов Менделя" ДеФриз опубликовал книгу "Внутриклеточный пангенез", в которой он постулировал, что каждый специфический признак в процессе наследования имеет свой наследственный переносчик, частичку.
Он назвал эти частички пангенами. Де Фриз писал, что как физика и химия основана на молекулах и атомах, так и биологические науки должны проникать до самых этих элементарных единиц для того, чтобы объяснить ими комбинации феноменов живого мира.
Идея, как говорится, уже давно витала в воздухе. Наконец, в 1909 г., чтобы объединить все эти названия Йоханссен (Johannsen) ввел термин ген. Это слово использовалось для единичных элементов, факторов, или аллеломорфов в гаметах. Слово ген происходило от наименования самой науки — генетики. Йоханнесен определил ген как специфические условия и детерминанты, которые присутствуют (в половых клетках — гаметах) в виде уникальных, отдельных и поэтому независимых единиц и на основе которых специфицированы (определены) свойства организма (“special conditions, foundations and determiners which are present [in the gametes] in unique, separate and thereby independent ways [by which] many characteristics of the organism are specified” [246. С. 124]). Йохансен понимал, что за словом ген в то время не стояло ничего существенного, но он считал, что слово ген имеет смысл и в реальности, особенно в рамках Менделизма.
В 1910 году Морган с сотрудниками описали плодовых мушек с белыми глазами. “Последующие исследования Моргана по передаче фенотипа белых глаз стали основой хромосомной теории наследования, связавшей отдельные единицы хромосом, которые он [Морган] называл генами, с наследованием признаков (traits) в потомстве и объяснившей механизм менделевского [типа] наследования”. За эти выдающиеся (изменяющие основы существовавшей тогда парадигмы) работы в 1933 году Морган получил Нобелевскую премию в области физиологии и медицины. (327, С. 591).
В том же 1933 году Морган заметил, что среди генетиков нет согласия насчет того, являются ли гены реалиями или это чистая фантазия. Для самого Моргана гены являлись биологическими аналогами молекул и атомов в химии и физике. Гены ему представлялись как некие гипотетические шарики на бусах, шарики диаметром несколько микрометров, в которых содержится некое неизменяемое от внешних воздействий наследственное вещество и которые кодируют указанные фенотипические характеристики: цвет, форму, расположение и т. д. Считалось, что гены-шарики располагаются линейно (279).
В те времена гены рассматривались в качестве единиц функций, которые идентифицировались генетическими методами (цвет цвет цветков, форма крыльев, число и форма колоний бактерий на чашке Петри. Этот анализ не имел ничего общего с ДНК или РНК. Имелась в виду исключительно функция, а точнее классификационный признак, рожденный с помощью человеческого языка (309)
Впервые высказали гипотезу о том, что гены содержатся в хромосомах Суттон и Бовери в 1902 г. (Цитируется по 307). Хромосомы не видны во время интерфазы (промежуток между делениями клеток). Однако Бовери доказал, что хромосомы сохраняют свою физическую интегрированность во время интерфазы. Хромосомная гипотеза Сутона и Бовери произвела эффект разорвавшейся бомбы, поскольку было окончательно доказано, что хромосомы — носители генетической информации в лаборатории Блэйкесли (173, 174, 315). Работая с одним из видом растений (Datura stramonium), имеющим 12 пар хромосом, Блэйкесли получил чистые линии мутантов, у которых кроме обычных 12 пар хромосом имелся небольшой кусочек из разных других пар. Все 12 линий имели разный фенотип. Эта же гипотеза была доказана в лаборатории Моргана позднее. В первом случае В 1921 г. Блэйкесли (174) сообщил о неменделевском типе наследования.
В 1928 году Гриффифс (225) открыл, что нечто, имеющееся в вирулентной бактерии, может быть перенесено в в живую невирулентную, болезнетворную бактерию и последняя может стать болезнетворной. Гриффит не знал, чем определяется трансформация и говорил о "трансформирующем начале". Только в 1944 г. было открыто, что это вещество может быть разрушено ДНК-азой, т. е. ферментом, который специфически режет ДНК (161).
В 1935 г. Бидл и Эфрусси изучали, как мутации в генах плодовых мушек дрозофил влияют на окраску их глаз и обнаружили, что различные мутации приводят к прекращению синтеза различных предшественников в пути биосинтеза глазного пигмента. Был сделан вывод: в норме гены обеспечивают наличие ферментов, осуществляющих биохимические реакции (226).
В 1941 г. тот же Бидл но уже с Татумом (164) открыли, что мутации в генах могут вызвать дефекты в метаболических путях. Что привело к созданию концепции один ген — один фермент. Но она оказалась тоже не совсем верной.
В 1944 г. Эйвери с соавторами (162) доказали, что ДНК является носителем наследственной информации в пневмококках. ДНК определяла биохимическую активность пневмококков и их специфические черты. Но в то время бактериям вообще отказывалось в праве иметь наследственную информацию, так как в них нет хромосом. Более того, в то время не все были убеждены, что то же самое имеет место быть в мире растений и животных.
В 1952 г. Херши и Чейз (232) показали, что в бактериофагах белки и нуклеиновые кислоты функционируют независимо друг от друга. А в 1955 г. ими же было обнаружено, что вещество переносимое бактериофагами из одной бактерии в другую есть ДНК (233). Тем самым была окончательно доказана роль ДНК, как хранителя наследственной информации.
Долгое время генетики считали, что гены работают постоянно и в одной и той же манере. О том, что подобная интерпретация может быть не верна, было предположено ещё Морганом. Он выдвинул гипотезу о батареях генов, которые синхронизируются в процессе развития. Однако только в 60-х годах стало ясно, что гены работают не все время — они включаются и выключаются в зависимости от специфических стимулов.
В 1961 году французские биологи Джакоб и Моно (243, 244) выдвинули гипотезу оперона — батареи генов, регулируемых одним регуляторным геном. Несколько генов могут функционировать как единый комплекс, названный опероном.
Они обнаружили, что у кишечной палочки одна мутация может приводить к исчезновению активности сразу нескольких генов. Для того, чтобы использовать в качестве пищи молочный сахар — лактозу, E. coli применяет сразу три фермента. Была обнаружена мутация (изменение в последовательности нуклеотидов ДНК), которая находилась вне этих трех генов, но приводила к тому, что активности всех трех ферментов отсутствовали и такие мутантные клетки не могли расти на среде с лактозой. Выяснилось, что эти три гена транскрибируются ДНК зависимой РНК полимеразой без остановок (ДНК зависимая РНК полимераза — фермент, осуществляющий синтез РНК на матрице ДНК, далее для краткости — РНК полимераза). В результате образуется единая длинная молекула матриксной РНК (такая молекула непосредственно используется рибосомой для синтеза белка), которая кодирует все три соответствующих фермента.
Тем самым Джакоб и Моно показали, что ген не просто функционирует — он должен активироваться или инактивироваться. То есть для обычных генов нужны гены регуляторные. Регуляторные белки приклеиваются к ДНК с целью контроля экспрессии (интенсивности синтеза) генов. Оперон представлял собой программу экспрессии генов. Возникли понятия генов-регуляторов.
Через 5 лет, в 1966 г. американцы В. Джилберт и Б. Мюллер-Хилл (218) открыли ген, ответственный за синтез белка-репрессора lac, то есть белка, блокирующего транскрипцию, тем самым представив дополнительные факты в поддержку данной гипотезы. Стал неясным вопрос, а оператор — это часть гена или нет.
В 1955 г. Была введена в оборот концепция цистрона, как область ДНК, которая подвержена мутациям (167). В 1958 г. Крик (194) сформулировал центральную догму генетики, в которой исключил возможность обратного потока информации от белка к РНК и от РНК к ДНК. В последнем случае он оказался не прав. Информация с РНК может переписываться на ДНК.
В 1959–1961 году концепция цистрона была чуть изменена (168, 169, 170). Она была детализирована после открытия Джакоба и Моно (243, 244). Цистрон стал определяться как последовательность нуклеотидов, кодирующая один белок (168–170), а ещё точнее ген — это непрерываемый участок ДНК, способный выполнять функцию в цис и транс аспекте (подробнее см. 309, 310). Если перевести с научного, то в понятие ген включили регуляторные гены (транскрипционные фактор, репрессоры…), то есть белки которые приклеиваются к регуляторным участкам ДНК, регулируя синтез белков с последующих участков ДНК. Непрерывный участок ДНК, включавший последовательности нуклеотидов, которые с помощью белков регулировали транскрипцию закодированных далее нескольких белков, получил название оперон. Ген оператор стал считаться частью гена. То есть, определение базировалось на следующей формуле: генетическая функция = ген = полипептид = непрерывный участок ДНК = цистрон.
В том далеком 1959 году, в самом начале эры молекулярной биологии ген определялся как единица функции определяемая генетическими методами, например цвет соцветий, форма крыльев мушки, число и форма колоний бактерий в чашке Петри. Обратите внимание никто не говорил тогда о генах как участках ДНК. Этот анализ не имел ничего общего с ДНК или РНК но определял исключительно функцию. Затем понятие ген было детализировано и под геном понималась не прерываемая последовательность нуклеотидов, кодирующая один белок. Функция (характеристика) = ген = полипептид = непрерывный участок ДНК. В те времена, термин ген был почти синомимом термину кодирование белка (295).
В 1965 г. двумя независимыми группами исследователей (285, 317) началась расшифровка генетического кода, который был теоретически предсказан советским физиком-невозвращенцем Гамовым (311).
В 1969 г. Патти задался вопросом, как последовательность нуклеотидов становится геном, как молекула становится сообщением. И не смог дать точного ответа (248).
Существенный шаг в понимании, что такое ген был сделан тогда, когда исследователи начали расшифровывать полные последовательности нуклеотидов в ДНК. Эти последовательности назвали геномами. В 1976 г. был получен первый полный геном бактериофага (212)
Открытие мозаичной структуры эукариотных генов было сделано в 1977 г. группами ученых, возглавляемых американскими исследователями Ричардом Робертсом и Филиппом Шарпом (170, 188, 216). Тем самым, были открыты интроны и сплайсинг. За это открытие им была присуждена Нобелевская премия. Но термины интрон и экзон предложил У. Джильберт (248).
Оказалось, что сначала матричные РНК синтезируется в виде непрерывного гигантского предшественника и только затем из нее вырезаются интроны, с процессе так называемого сплайсинга, то есть вырезания некодирующих участков из незрелой матричной РНК. Более того, один и тот же участок ДНК может кодировать несколько белков, которые синтезируются независимо друг от друга, если изменить так называемую рамку считывания. Были обнаружены гены, которые вообще не кодируют полипептидов. Это гены, кодирующие транспортные РНК (тРНК) или рибосомные РНК (рРНК), участвующие в синтезе белка. В составе матричной РНК были открыты так называемые нетранслируемые участки, которые в некоторых генах, например, прионах, длиннее чем сама кодирующая часть мРНК.
Уже Б. Мак-Клинток в своей Нобелевской лекции описала геном как очень чувствительный орган клетки, отслеживающий свою активность и корректирующий общие ошибки, чувствуя необычные и неожиданные события и реагирующий на них.
Геном, как команда в футболе. Никогда не знаешь, заиграет команда из лучших игроков или нет, пока не попробуешь. Как видим, никаких шариков на бусах нет и в помине.
В 1985 г. философом Р. Бурианом в очередной раз был поставлен вопрос о том, а что же такое ген (248). В свое время ген был провозглашен “удобным понятием”, “рабочей гипотезой” и т. п. В том же 1985 г. Фэлк (208) писал, что ген это элемент ДНК «и не дискретный и не непрерывный и не имеющий конкретной локализации и четко очерченной функции и даже постоянной последовательности нуклеотидов и четких границ» (… the gene is [.]neither discrete [.] nor continuous [.], nor does it have a constant location [.], nor a clearcut function [.], not even constant sequences [.] nor definite borderlines.
По мнению Портина (293. С. 208), старый термин ген, полезный в начале развития генетики, уже бесполезен в современных условиях. С ним согласен У. Джелбат, который пишет, что ген более не является физическим объектом. Это более концепция, которая приобрела большое значение в прошлом, но потеряла его в настоящем. По мнению историков науки, концепция гена никогда не была единой, понятной и точно очерченной (248. С. 69). Как видим, четкого понятия, что такое ген не было, нет и, скорее всего, не будет. Но давайте продолжим наш анализ.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК