8.8. МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ ПЕРЕЗАПИСИ НАСЛЕДСТВЕННОЙ ИНФОРМАЦИИ

Приклеивание к ДНК комплементарной РНК может блокировать транскрипцию, то синтез РНК на основе ДНК. Поэтому клетка ограничивает возможность для такой гибридизации. ДНК бывает почти всегда скручена. Однако это возможно в момент удвоения ДНК, если в этот момент в ядре оказывается молекула РНК, комплементарная расплетенному участку ДНК. Возможно повреждение или удаление генов при кроссинговере.

Гены и другие фрагменты ДНК могут попадать в цитоплазму и встраиваться в ДНК области теломеров — хвостов хромосом (176). ДНК может попадать внутрь растительной клетки с помощью бактерий или при разрушении, а затем восстановлении строения клеточной стенки в области каллюса.

Возможны следующие механизмы переноса генетического материала из клетки подвоя в клетки привоя и наоборот. 1. использование передачи наследственной информации посредством двойных спиралей РНК, матричной РНК и далее перенос наследственной информации с молекулы РНК на ДНК с помощью ретровирусов. 2. Прорастание тяжа клеток с получением химеры из двух типов клеток. При этом прорастание тяжей клеток в плоды с образованием химер. Но в этом случае все равно требуется слияние клеток разных видов. А виды это нескрещиваемые популяции. Кроме того ростом клеточных тяжей из места срастания привоя и подвоя нельзя объяснить передачу признаков через поколения. Поэтому проще объяснить через малые двойные РНК и мРНК.

Вирусы растений отличаются от вирусов других живых существ тем, что их геном, как правило, не встраивается в геном растений, поскольку их наследственный аппарат представлен, главным образом, РНК. Те же немногочисленные вирусы, которые имеют геном, состоящий из ДНК, могут встраиваться (176).

Чтобы понять, как вирусы могут переносить наследственную информацию несколько слов о вирусах и жизненном цикле вирусов, содержащих РНК. РНК вирусы могут иметь двойную цепь РНК или одиночную цепь РНК. Попадая в клетку хозяина, РНК вирусы могут сразу использовать РНК-зависимые полимеразы для синтеза мРНК, только на которой могут синтезироваться белки вируса. Обычно, попадая в клетку хозяина, геном вируса подавляет геном хозяйкина и заставляет того работать только с РНК или ДНК вируса.

Если одиночная цепь РНК соответствует мРНК, то сначала на ней синтезируется комплементарная цепь, а потом на основе данной цепи идет синтез мРНК и все так же, как описано выше. Если же цепь РНК вируса не соответствует мРНК, то есть, комплементарна ей, то на ней сразу синтезируется мРНК.

Наконец, имеются ретровирусы. Они имеют одиночную цепь РНК, но на ней в них сначала синтезируется комплементарная ей цепь ДНК, затем на основе этой цепи идет сборка полной двойной цепи ДНК и только потом обычными механизмами, как и у хозяина, идет синтез мРНК вируса для синтеза вирусных белков.

ДНК, синтезированная на основе РНК ретровируса внедряется в ДНК хозяина в виде провируса. Затем синтезируется комплементарная РНК, которая может использоваться или как мРНК для синтеза белков ретровируса или как носитель информации для упаковки в вирусную частичку. Данный фермент упаковывается в вирусную частицу.

Точно также давно известно, что плотный контакт между клетками паразитического растения и клетками хозяина способствует перемещению генетического материала (197, 281).

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК