4.9. МЕТИЛИРОВАНИЕ И АЦЕТИЛИРОВАНИЕ ГИСТОНОВ

Хроматин сам по себе несет информацию, которая не записана в ДНК. Она может быть довольно стабильной и передаваться из поколение в поколение (255). Свойствами внегенетического наследования обладают следующие свойства хроматина: 1) распределение и организация в пространстве метилирования и ацетилирования гистонов, 2) его трехмерная организация.

Для изменения степени в взаимодействия гистонов с ДНК необходимы биохимические превращения гистонов (это белки, образующие диски, на которые накручивается двойная спираль ДНК) и ДНК, которые само по себе требуют энергии АТФ. Такие модификации ведут к сборке, перемещению и разборке нуклеосом и обмену гистонов в них (189, 255).

В ДНК имеются определенные сегменты, которые имеют большее сродство с ДНК. Поэтому одни нуклеосомы могут быть гибкими, другие менее гибкими (255). В целом же нуклеотидные последовательности ДНК не определяют положение нуклеосом в ядре (349). Однако ферменты, которые обеспечивают ремоделирование могут быть чувствительны к тому, как расположены нуклеотиды в ДНК (255).

Белковые комплексы нуклеосом могут двигаться по ДНК и изгибаться, что делает хроматин гибким (189). Упаковка нуклеосом в трехмерные структуры более высокого уровня также изменяет доступность ДНК для белков, склеивающиеся с ДНК. Упаковка ДНК в нуклеосомы делают ее менее доступной для белков и других молекулярных машин, которые считывают с неё информацию. Хотя некоторые ядерных белки легче приклеиваются к ДНК, накрученной на нуклеосому. Плотная упаковка хроматина защищает ДНК от повреждений. Уменьшение степени конденсации хроматина связано с сильным ацетилированием гистонов (255).

Одним из способов регулирования функциональной активности генома является химическая модификация гистонов. В ядре двойная цепь ДНК делает двойной спираль дважды обвивает белковый комплекс, состоящий из 8 белков гистонов. Гистоны — это белки, ответственные за плотную упаковку цепи ДНК в хромосомы. Вместе с ДНК и некоторыми другими белками, гистоны образуют хроматин, видимую под микроскопом структуру ядра. Термин хроматин был впервые предложен В. Флеммингом ещё в XIX веке.

Гистоны могут подвергаться метилированию (присоединение СН3 группы), ацетилироваться (присоединение С2Н5 группы), фосфорилироваться (присоединение остатка фосфорной кислоты), сшиваться с коротким полипептидом под названием убиквитинин или небольшими белками, подобными убиквитинину. Распределение модифицированных гистонов неоднородно. Например, теломерный и перицентрический хроматин чаще всего имеет низкий уровень ацетилирования гистонов (294).

Подобные химические изменения гистонов часто приводят к внегенетической передаче наследственной информации (231, 286). Например, ацетилирование гистонов ведет к активации генов, тогда как присоединения убиквитина или подобных белков ведет к угнетению работы генов. Из-за ацетилирования приклеивание ДНК к гистоновому комплексу становится менее плотным и ДНК становится доступнее для транскрипции (305, 322). Тем самым возникает наследственное изменение структуры хроматина без изменения первичной структуры ДНК. По сути, можно говорить об особом гистоновом коде.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК