7.6. ПРИМЕРЫ НАСЛЕДОВАНИЯ ПРИОБРЕТЕННЫХ ПРИЗНАКОВ

Сначала я приведу примеры экспериментов, которые выполнили сторонники Лысенко, затем я опишу новые, полученные в самое последнее время результаты, которые доказывают, что данные Лысенко и его соратников были верными. Все примеры убедительно показывают, что приобретенные признаки передаются по наследству, если они влияют на выживаемость. Если они не имеют значения для естественного отбора, то не передаются.

Академик Н. Г. Беленький на сессии ВАСХНИЛ привел обзор экспериментов, показывающих наследование приобретенных признаков. Цитирую: "Таких опытов много. Остановлюсь лишь на некоторых. Вспомним известные эксперименты Каммерера. Каммерер использовал для своих опытов два вида саламандр, близко родственных друг другу: Желто-черную пятнистую Salamandra maculosa и черную альпийскую Salamandra atra. Из них вторая нормально является живородящей: он производит на свет двух уже совершенно сформировавшихся и приспособленных к наземной жизни саламандр длиной в 38–40 мм, прошедших через все стадии метаморфоза в материнском организме. В противоположность ей саламандра макулоза, нормально обитающая в сырых лесах, является одновременно живородящей и яйцекладущей. Она может производить на свет большое количество не вполне сформировавшихся водяных личинок длиной в 25–30 мм, с четырьмя конечностями и короткими жабрами, или же откладывает в воду большие яйца, из которых выходят подобные же личинки длиной в 23–25 мм. Те и другие личинки после нескольких месяцев жизни в воде претерпевают полный метаморфоз и превращаются в наземных саламандр длиной в 45–50 мм. В своих опытах Каммерер попытался изменить способ размножения у обоих видов саламандр, изменив условия их обитания. Он стал держать саламандр макулоза без воды, вследствие чего откладываемые ими яйца и рожденные водяные личинки погибали. Однако через некоторое время саламандры начали задерживать яйца и зародыши в своем организме до тех пор, пока они не претерпевали полного метаморфоза и затем появлялись на свет уже способными к наземному образу жизни. В результате "воспитания" в условиях отсутствия воду саламандры макулоза стали по ряду признаков походить на саламандр атра: 1) у них сильно уменьшилось количество потомков при рождении (не более 2–7), 2) судьба яиц и эмбрионов до появления на свет стала сходной с их судьбой у саламандр атра, 3) окраска молоди изменилась почти до черной. Полученным в этом эксперименте потомкам "перевоспитанных" саламандр макулоза, после достижения ими половой зрелости, Каммерер опять открыл доступ к воде. Очутившись в условиях, нормальных для саламандр макулоза, эти потомки, тем не менее, сохранили до известной степени измененный способ размножения: они совершенно не откладывали яиц, а производили на свет водяные личинки, характеризовавшиеся сильно редуцированными или рудиментарными жабрами, и в момент появления на свет находились на более поздней стадии метаморфоза, чем это нормально наблюдалось у саламандр макулоза. То же самое Каммерер проделал с черной альпийской живородящей саламандрой атра. Этих саламандр он стал воспитывать в условиях тепла и обилия воды и тоже добился изменения способа размножения. Вместо двух вполне сформировавшихся детенышей, готовых к наземной жизни, они начали производить на свет по 3–9 водяных личинок, проходивших метаморфоз в воде. Потомков саламандр атра, "перевоспитанных" в этом опыте, Каммерер продолжал держать в условиях основного опыта (тепло и доступ к воде). Модификация родительских особей у них полностью сохранилась и даже несколько усилилась: они тоже производили на свет по 3–5 водяных личинок (длиной в 21–23 или 33–44 мм) светлого цвета и несущих жабры. В другой серии опытов с саламандрами макулоза Каммерер поставил себе задачей адаптивно изменить у них окраску тела. Они имеют неправильные и изменчивые желтые пятна, разбросанные по черному полю. Каммерер в течение нескольких лет содержал более темные варианты на желтом фоне, а более желтые варианты — на черном фоне. Первые обнаружили заметное увеличение желтых пятен в окраске (посветление), а вторые, воспитывавшиеся на черном фоне, обнаружили потемнение окраски. Потомство саламандр, которое на желтом фоне показало увеличение желтых участков, Каммерер разделил опять на две группы: первую он продолжал держать на желтом фоне, а вторую поместил на черный фон. В первой группе размеры желтых участков чрезвычайно увеличились, а у саламандр второй группы желтого пигмента стало меньше, чем у первых, но тем не менее они были значительно желтее нормальных саламандр макулоза, несмотря на то, что воспитывались на черном фоне. Отсюда можно заключить, что им наследственно передавались свойства, приобретенные родителями под влиянием факторов внешней среды.

Гетери произвел такой опыт над курами: черной курице пересадил яичник от белой, и она была оплодотворена белым петухом, но цыплята при этом были частью белые (9 шт.), а частью пестрые (11 шт.). Точно так же белая курица, которой был пересажен яичник от черной и которая была оплодотворена черным петухом, дала цыплят пестрых (12 шт.); так как наследственность была со стороны мужского и женского организма в обоих случаях одинакова, то появление черной окраски в первом случае и белой во втором может быть объяснено только воздействием соматических клеток на половые.

Гюйер и Смит вводили в организм крольчих антитела хрусталика (цитолитическую сыворотку, разрушающую субстанцию хрусталика кролика). Введенные антитела никакого явного действия на сложившийся организм крольчих не оказывали, но у рожденных ими детенышей в некоторых случаях обнаруживались дефекты глаз (помутнение хрусталика, полное исчезновение глазного яблока и т. д.). Эти аномалии передавались затем по наследству, без дальнейшего вмешательства, следующим потомкам на протяжении девяти поколений, причем с каждым новым поколением дефекты оказывались все сильнее выраженными без какого-либо дополнительного вмешательства. Аномалии глаз передавались не только через матерей, но и через отцов (при спаривании имеющего аномалию самца с нормальной самкой). Опыты эти нашли свое подтверждение при последующих проверках.

Гоиффит вызывал у крыс наследственные специфические нарушения равновесия (вестибулярный дефект), заставляя родительские особи в течение до 1,5 лет постоянно вращаться в круглых клетках либо по направлению часовой стрелки, либо против часовой стрелки. Этот дефект вестибулярного аппарата передавался по наследству.

Недавно С. Расс и Дж. Скотт опубликовали опыты на крысах, показавшие, что иммунизация родителей против саркомы Иенсена до известной степени передается потомству в виде частичной устойчивости против прививок саркомы. Передача происходила не только через матерей, но и через отцов. При прививке саркомы детенышам иммунизированных крыс, средний объем образующихся у них опухолей был почти вполовину меньше, чем у контрольных (в 42 % случаев против 10 %). Такой же результат был получен при прививке саркомы крысятам, родители которых не были сами иммунизированы, а только происходили от иммунизированных животных. Вызываемая иммунизацией устойчивость к саркоме передавалась второму поколению потомков без дальнейшего вмешательства.

Блур установил факт передачи по наследству свойств мышц, измененных под влиянием упражнения. В течение месяца и больше автор заставлял крыс-самок совершать моцион в специальных клетках. Их потомство по достижении веса в 120 г было тоже помещено в такие же клетки, приспособленные для упражнения мышц. Половину потомства умерщвляли для производства анализов, а другую половину использовали для размножения. Таким же образом поступали с двумя дальнейшими потомствами. У представителей второго и третьего поколения мышцы оказались значительно более развитыми, чем у крыс первого поколения (при сравнительно небольшой разнице между крысами второго и третьего поколения). В то же время у крыс второго и третьего поколения мышцы содержали значительно больше фосфоролипидов и в особенности холестерина, чем у первого поколения. Отсюда автор заключает, что результаты упражнения мышц передаются по наследству потомкам.

Не буду продолжать многочисленные опыты на животных, сообщу лишь о том, что мне недавно привелось проверить и несколько развить старинные опыты Броун-Секара на морских свинках. Перерезка седалищного нерва в месте выхода его из спинного мозга ведет к образованию у животного условно названной нами эпилептогенной зоны, раздражение которой часто ведет к тоническим мышечным напряжениям. Это свойство животного, вызванное у родителей хирургическим вмешательством, мы обнаружили у отдельных экземпляров даже в третьем поколении. Больше того, у той части потомства морских свинок, у которых внешне не обнаруживалась реакция, напоминающая эпилепсию, нами констатированы явные отклонения от нормы и характера возбудимости нервно-мышечной системы свинок, внешне не проявляемые. Это устанавливалось нами путем определения времени рефлекса и порога раздражения задней конечности морских свинок.

Таким образом, эксперимент Броун-Секара нашел свое подтверждение много десятков лет спустя. Вывод из него достаточно ясен: свойства, приобретенные животным организмом под влиянием действия факторов внешней среды, могут наследоваться. Такой вывод совершенно неприемлем для морганизма-менделизма, ибо признание его означает полный отказ от своей теории, так как ненаследуемость приобретенных свойств организма есть краеугольный камень этого "учения".

Профессор Н. И. Нуждин (Институт генетики Академии наук СССР) привел другие примеры наследования приобретенных признаков:

"В 1918–1924 гг. Гюнер и Смис выполнили свои впоследствии нашумевшие опыты по наследственному изменению дефектов глазного хрусталика. Они брали глазной хрусталик кролика, растирали в физиологическом растворе и иммунизировали им курицу. Затем брали кровь курицы и впрыскивали ее сукрольной крольчихе. В результате получали потомство с дефектом глазного хрусталика. Эти опыты приводятся во всех учебниках как пример ошибочных, ламаркистских опытов, которые не состоятельны. При повторении недавно этого опыта американским исследователем Хайдом, полностью подтвердились результаты, полученные Гюнером и Смисом. Об этом сообщил известный генетик Стертевант" (конец цитаты).

Самым, на мой взгляд, показательным является следующий эксперимент, проделанный ещё в 1951 году последовательницей Лысенко Самохваловой. Используя тлей, которые размножались только партеногенетически, то есть бесполым путем, Самохвалова (100) показала, что если две популяции тлей выращивать каждую на своем виде растения, то при перенесении их на вику, ткани которой наиболее благоприятны для поедания данным видом тлей, у них сохраняется разница в темпе размножения в течение нескольких поколений. Тли, которые выращивались до вики на хорошо поедаемом растении, и тли, которые выращивались на неблагоприятном для поедания тлями растении, имели значительную разницу в темпе размножения (первая группа тлей размножалась быстрее). Эта разница сохранялась в течение нескольких поколений.

Оказалось также, что кормовое растения оказывает существенное влияния на рисунок, имеющийся на теле тлей. Этот рисунок сохраняется в течение нескольких поколений после перенесения тлей на самую поедаемую ими вику. У Самохваловой плодовитость тлей была прослежена в течение 17–29 поколений. Самохвалова (130) сделала вывод, что это связано с закреплением в геноме условий жизни и была права.

А теперь о современных испытаниях.

В последние годы появилось несколько наблюдений, которые делают позицию Лысенко в том стародавнем споре ещё более прочной. Примеров очень много, я приведу лишь некоторые из результатов, подтверждающих наследование приобретенных признаков.

Обнаружено, что умственные упражнения родителей могут сказаться на способностях их потомков. Фейг и его коллеги (210) использовали генетически неполноценных мышей, у которых отсутствовала способность к обучению. Если обычную лабораторную мышь поместить в клетку, к полу которой подведены электроды, и подвергнуть нескольким ударам тока, она запомнит опыт: угодив в установку повторно, начнет паниковать. А вот генетически неполноценные мыши вели себя в шоковой камере невозмутимо и на второй раз, и на третий, и на четвертый. Чтобы избавить мышей от врожденного недостатка, ученые принуждали их упражнять ум с самого рождения. Экспериментальные животные проводили все детство в отдельных клетках, куда исследователи подкладывали все новые и новые объекты, заставляя мышей приспосабливаться к меняющейся обстановке. Усилия не прошли даром — такого курса «умственной гимнастики» оказалось достаточно, чтобы генетически неполноценные животные перестали уступать в рассудительности своим обычным собратьям. Благотворный эффект от тренировок не ослабел даже к тому времени, когда у подопытных появилось потомство.

Тут-то ученых и ждал главный сюрприз. Хотя потомки мышей, чей ум исследователи пытались развить, продолжали носить в себе дефектные гены родителей, в электрошоковой камере они сразу вели себя как вполне полноценные мыши. Результат, которого первое поколение экспериментальных животных добивалось путем упорных тренировок, давался их потомкам без труда. А вот у мышей, не тренировавших ум смолоду, рождались такие же недалекие отпрыски.

Убедившись, что достижения мышей передаются потомкам, ученые решили выяснить, какую роль тут играет каждый из родителей. Биологи создавали пары из прошедших тренировку животных и их не напрягавших ум собратьев. Выяснилось, что потомство таких мышей наследовало достижения предков только по материнской линии. При том, что мамы подопытных Фейга выполняли необходимые упражнения еще в раннем детстве, когда не были беременны.

Недавно исследователи показали (264), что растения могут переписывать генетический код, который они наследуют от родителей, и возвращаться к таковому их бабушек и дедушек. При изучении конкретного сорта Кресс (Cress) растения Arabidopsis, который несет мутацию в обеих копиях гена, именуемого "горячая голова" (HOTHEAD) Р. Прюитт (Pruitt) и его коллеги обнаружили, что, возможно, организмы обладают механизмом дублирования, который может обходить нездоровые генные последовательности их родителей и возвращаться к более здоровому генетическому коду, которым обладали их бабушка и дедушка или прабабушка и прадедушка.

На мутантных растениях лепестки и другие части цветка неправильно сращены вместе. Поскольку эти растения передают мутантный ген своим потомкам, обычная формальная генетика диктует, что те будут также иметь сросшиеся цветки. На практике не так: группа Прюитта выяснила в результате некоторого времени наблюдений, что около 10 % потомства имеют нормальные цветки. Расшифровав последовательности нуклеотидов в ДНК, исследователи показали, что это второе поколение растений переписало последовательность ДНК одного или обоих из их генов hothead. Они заменили неправильный код их родителей обычным кодом, которым обладали более ранние поколения. Сначала Пруитт задался вопросом, а не загрязнили ли посторонние семена или пыльца его растения? Но повторённые эксперименты исключили это, так же, как и возможность того, что некий другой ген дублировал hothead и хитро маскировал действие гена некорректного.

Одна из возможностей состоит в том, что растения используют дополнительную копию гена, расположенную в другом месте в их ДНК. Но это кажется маловероятным, потому что команда ученых обнаружила, что растения могут переписывать код генов, которые не имеют никаких подобных им копий в другом месте генома.

Вместо этого, полагает Прюитт, растения несут неизвестный прежде запас связанной молекулы РНК, который действует как резервная копия ДНК. Такие молекулы могут передаваться в пыльцу или семена наряду с ДНК и использоваться как шаблон, чтобы исправлять некоторые гены. Это происходит, когда ген hothead мутирует, возможно, потому, что растение переживает стресс. Такой процесс может существовать, потому что это помогает растениям выживать всякий раз, когда они окажутся в трудных условиях, вроде недостатка воды или питательных веществ. Такой стресс мог бы запускать у растений механизм возврата к генетическому коду предков, который является, возможно, более выносливым, чем таковой их родителей.

Считалось, что устойчивость бактерий к антибиотикам появляется за счет спонтанных мутаций. Однако в 1988 г. на тех же бактериях Джон Кэйрнс (Cairns) показал, что среди мутаций присутствуют индуцированные (147). В 1981 г. английские медицинские микробиологи констатировали: "Иногда в результате мутации в каком-то одном локусе чувствительная клетка сразу же за один этап приобретает устойчивость к высоким дозам лекарственного препарата. Однако чаще устойчивость возникает вследствие небольших дискретных изменений, обусловленных последовательными мутациями во многих локусах… Первоначально считалось, что модификация генома в результате спонтанной мутации, вызывающей лекарственную устойчивость, и последующий отбор устойчивых клеток к присутствию лекарственного препарата удовлетворительно объясняют появление устойчивой к этому препарату популяции клеток. Однако открытие у бактерий способности включать дополнительный генетический материал… привело к пониманию того, что спонтанные мутации вносят лишь малый вклад в клиническую проблему лекарственной устойчивости" (146, 147).

Наследование приобретенных реакций на среду, скорее всего, обнаруживается чаще в экстремальных условиях, когда новый вариант признака проявляет себя в большей способности особи адаптироваться к качественно новым условиям среды. Не исключено также, что появление такого признака или свойства больше приурочено к ранним стадиям развития или стадиям, чувствительным к изменению условий внешней и внутренней среды.

На плодовых мушках и мышах (132) была доказана возможность наследования через мейоз измененного характера проявления мутантного гена. Опыты с мышами были довольно простыми — кратковременное (20 мин) прогревание тела восьмидневного мышонка самки вызывало стойкие изменения ооцитов, ослаблявшие действие вредной мутации у внуков! “Передача улучшения развития глаз, наблюдаемая в опытах с нагреванием, может быть объяснена только передачей свойств, приобретенных ооцитами нагретых самок по наследству”. " Т. е. воздействие на организм температуры привело а) к направленной мутации (а не случайной, как того требовала классическая генетика); б) к наследованию приобретенного в результате направленной мутации свойства по наследству (цит. по 26).

Хотя эволюционные исследования говорят о том, что видимые исследователю мутации в среднем гене возникают один раз каждые 200000 лет (157). Но как тогда объяснить эксперименты Самохваловой (130)?

Сейчас, после многих лет полного забвения, проблема изучения наследования приобретенных признаков вновь поднимается. Свидетельства тому — начавшиеся публикации на эту тему (46).

Обнаружена чёткая корреляция между продолжительностью жизни людей и питанием их дедушек и бабушек. Эти признаки наследовались в течение нескольких поколений (224).

В обзоре Йоунгсона и Увайтло (347) приведены эксперименты, убедительно доказывающие передачи приобретенных признаков у мышей как минимум до 3 поколения. Например, потомки растений, которые выращивались при недостатке питательных веществ в омывающем корни растворе, образовывали гораздо более мощную корневую систему, чем потомки генетически идентичных растений, которые выращивались в условиях достатка питательных веществ. При этом передача приобретенных признаков более четко проявляется если наследование идет по материнской линии.

Например, у подопытных мышей вызвали мутацию гена, ответственного за появление белых пятен на хвосте, а затем скрестили особей, в геноме которых сохранились старый и новый гены. Вопреки классическим законам Менделя, пятнистой оказалась и та часть потомства, которой вовсе не достались измененные участки родительской ДНК. Как оказалось передача наследственных свойств происходила через матричную РНК. Чтобы проверить гипотезу, порцию такой РНК ввели в эмбрион, зачатый "нормальными" мышами — а затем нашли у новорожденных мышей пятна на хвосте (297, 298).

Малозаметный сорняк, широко использующийся в качестве лабораторного растения, с громким латинским названием Arabidopsis thaliana оказался способен замещать "ошибочный" генетический код, доставшийся от родителей, унаследованными через поколение фрагментами генома. Попытки найти хранилище "запасных" генов внутри самой ДНК успехом не увенчались: растение воспроизводило и те последовательности, которые не встречались нигде в исходной цепочке (264).

Яровизация прорастающих семян арабидопсиса или обработка их 5- азацитидином приводит к более раннему цветению растений, сохраняющемуся у вегетативного потомства; показано, что это обусловлено уменьшением уровня метилирования ДНК, предположительно, в промоторном (начальном) участке гена, инициирующего цветение. Как правило, измененный уровень метилирования сохраняется лишь при митотическом делении. Но эпигенетические изменения могут стойко передаваться и при половом размножении (231).

Известная со времен К. Линнея встречающаяся в природе форма Linaria vulgaris с радиальной симметрией цветка (основная форма с билатеральной симметрией) вызвана высоким уровнем метилирования в одном из ответственных за развитие цветка генов — особенность, стойко воспроизводимая в семенном потомстве; при этом иногда мутант фенотипически возвращается к основному типу в результате деметилирования этого гена и восстановления его способности служить копией для синтеза белка (231).

В интернете я нашел упоминание об интересном эксперимент с блохами. Их помещают в банку, закрывают крышкой и оставляют на 3 дня. После этого крышку открывают, но ни одна блоха уже никогда не прыгнет выше, чем была крышка. И даже потомство, которое родится у них, никогда не прыгает выше родителей.

Как видим, появляется все больше и больше данных, свидетельствующих о том, что приобретенные признаки могут передаваться по наследству.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК