8.3. ЧТО БЫЛО ИЗВЕСТНО В 1948 ГОДУ?
Вегетативные гибриды на уровне знаний 1948 года с точки зрения школы Лысенко подробно описал в своей монографии И. Е. Глущенко (30). В ней он подробно проанализировал не только собственные результаты, но и результаты тех ученых, которые пришли к выводам о том, что при вегетативной гибридизации наследования нет. Приведу длинную цитату из этой книги (30) (Сразу отмечу, что если кому-то эти детали не интересны, то пусть перелистнет несколько страниц. Мне же очень важно донести до нынешних ученых тот факт, что опыты по вегетативной гибридизации были построены очень даже научно).
“Генетик Ганс Винклер, длительное время работавший по прививкам между S. nigrum и L. esculentum. Его эксперименты на протяжении уже четырёх десятков лет перепечатываются из учебника в учебник во всех странах мира.
Винклер поставил перед собой задачу доказать, что «клетки двух существенно различных видов могут сойтись другим, не половым путём, чтобы служить общей исходной точкой для организма, который при совершенно однородном общем росте одновременно будет обладать свойствами обоих первоначальных видов»(1907).
Свои опыты Винклер проводил над прививками томата и паслёна. Методика заключалась в том, что с томатного стебля удаляли верхушку и все пазушные почки. На томат прививался клином побег чёрного паслёна. Были у Винклера и прививки обратного порядка. Через некоторое время (10–15 дней), когда происходило полное срастание, привой на месте прививки срезался. Таким образом, декапитированные растения состояли из небольшой части привоя, зажатого боковыми частями подвоя. На поверхности такого среза образовывался каллюс. Со временем на каллюсе развивались придаточные почки, а из них побеги. При такой операции большая часть растений давала побеги чистого паслёна или чистого томата, но определённый процент растений нёс промежуточные томатно-паслёновые признаки. Такие побеги Винклер отчеренковывал, укоренял и доводил до взрослых растений.
Винклеру удалось получить несколько разнообразных химер, подробно описанных в ряде работ (1907, 1910, 1912, 1916, 1938). Винклером и Бауром (1913) была разработана своеобразная классификация химер. Согласно установившемуся взгляду, химеры по своему характеру могут быть разных типов, а именно: а) секториальные, б) периклинальные, в) мериклинальные, г) различные иные типы, не подходящие под данные определения. Секториальные химеры — это такого рода сожительство двух разнородных тканей, когда при поперечном разрезе стебля чужая ткань обычно занимает в виде сектора лишь известную часть всего круга. Под периклинальными химерами понимается обволакивание ткани одного типа тканью иного типа. Периклинальные химеры, в свою очередь, бывают монохламидными (с одним внешним чужим слоем клеток) и дихламидными (с двумя чужими слоями). Мериклинальные химеры занимают промежуточное место между двумя упомянутыми типами. Часто они являются первоначальной формой развития химеры и в дальнейшем имеют тенденцию превращаться в тип периклинальных химер.
Особый интерес представляли такие формы, как:
S. tubingense — один слой клеток томата поверх паслёна;
S. Koelreuterianum — один слой клеток паслёна поверх томата;
S. proteus — два слоя клеток томата поверх паслёна;
S. Gaertnerianum — два слоя клеток паслёна поверх томата.
S. Darwinianum. Кроме этих четырёх форм, Винклер получил ещё довольно интересную пятую форму — S. Darwinianum, представляющую, по мнению Винклера, продукт слияния соматических клеток, т. е. бурдон.
Внешний облик этих основных форм следующий:
S. tubingense напоминал по форме листьев паслён, но имел сильно выраженное томатное опушение.
У S. Koelreuterianum форма листьев была сходна с томатом, но поверхность их была паслёновая.
S. proteus имел форму листьев паслёновую, с сильно выраженными томатными признаками.
S. Gaertnerianum имел обратное соотношение признаков.
У S. Darwinianum был ярко выраженный промежуточный между томатом и паслёном тип листьев, хотя эпидермис был сходен с эпидермисом паслёна.
Судя по материалам и рисункам, опубликованным Винклером (1916, 1938), химерные растения дают довольно большое разнообразие по такому признаку, как количество хромосом. Но в этом разнообразии есть и своя закономерность: наблюдается тенденция в сторону увеличения количества хромосом и далеко не всегда в кратном отношении.
Так, S. tubingense № 15170 во время первого редукционного деления имеет 72 хромосомы. В клетке из паренхимы столбика (пятый слой снаружи) Винклер наблюдал 144 хромосомы, в клетке из крахмалоносного влагалища стебля насчитывается 195 хромосом.
Ещё большее разнообразие в хромосомном наборе наблюдается у S. Koelreuterianum № 15126. Данная прививка имела в различных частях разное количество хромосом, с колебанием от 48 До 105.
… У S. proteus 2n = 24, у S. Gaertnerianum 2n = 72, у S. Darwinianum наблюдались клетки с 48 хромосомами.
Теоретически Винклер ожидал получить в результате слияния ядер такие формы, которые несли бы в своих соматических клетках 24+72 = 96 хромосом и в половых 12+36 = 48 хромосом (Соматические клетки томата имеют 24 хромосомы, паслёна — 72 хромосомы; в половых клетках соответственно меньше в два раза). Именно этой картины Винклеру не удалось получить. Единственная форма, которую пытался Винклер наименовать настоящим бурдоном, — это S. Darwinianum (48-хромосомное растение). Объяснение автора свелось к тому, что здесь якобы было полное слияние ядер, т. е. инициальная клетка была 96-хромосомной и в силу какого-то авторегулирующего процесса поделилась пополам и стала 48-хромосомной.
В своей последней работе Винклер (1938) утверждал, что он, в конце концов, получил настоящий бурдон от прививки между томатом желтоплодный Король Гумберт и чёрным паслёном. Ткани последнего были покрыты двухслойной томатной туникой. Внутренний компонент давал 72 хромосомы и внешний — от 52 до 56 хромосом. Объяснение Винклера здесь сводилось к тому, что в данном случае произошло не полное, а частичное слияние ядер соматических клеток томата и паслёна.
Несколько слов об этом бурдоне. Согласно описанию Винклера, данная форма имела цельнокрайние, без зазубренности, листья типа паслёна; кроме того, она давала плоды, окраска которых не была чисто жёлтой (как у партнёра, желтоплодного Короля Гумберта), а имела оранжевый оттенок, — к желтизне примешался красный цвет.
Разные плоды были по-разному окрашены; больше того, в пределах плода одни участки имели интенсивно оранжевую окраску, другие — светложёлтую. Плоды этой формы обладали ещё одним признаком, который совершенно отсутствовал у обоих родительских видов: их эпидермальные клетки имели сосочкообразные выросты.
Путём черенкования описанной химеры Винклеру удалось получить, как он утверждает, полный бурдон, т. е. освободиться от внутреннего паслёнового компонента и получить растения с томатными клетками, имеющими от 52 до 56 хромосом. Этот так называемый «полный бурдон», освободившись от паслёнового побега, оказался полностью стерильным; кроме того, он лишился способности укореняться, а также давать придаточные побеги на стеблях при регенерации. И Винклер вынужден констатировать, что «по-видимому гены, обусловливающие регенеративное образование корней и побегов, гармонически не сработались в клетках бурдона».
Загадкой для Винклера остался и сам факт появления новой оранжевой окраски у плодов той формы, из которой получен «полный бурдон». Винклер вынужден откровенно признаться: «Я, конечно, отчётливо сознаю, что все эти соображения носят чисто спекулятивный характер, и, возможно, что объяснение столь поразительному проявлению доминантного признака в гомозиготно-рецессивной форме следует искать совсем в другой области» (1938)" (конец цитаты).
МОЙ КОММЕНТАРИЙ. Итак, у Винклера получились плоды другой цветности, чем у нормальных растений, хотя они прошли стадию эмбриогенеза, которая удаляет почти все эпигенетические факторы наследования. Но ведь про плодоношении клетки плода проходят через стадию одной клетки-зиготы, то есть через половое размножение и никакие белковые транскрипционные факторы не могут играть свою роль. При этом слились две клетки мужская и женская и они дали потомство. Если происходит слияние клеток паслена и томата, то гетерокарионы первого поколения должны быть нежизнеспособны, поскольку число хромосом у них разное. Поэтому непонятно, как делиться клеткам с разным расположением аллельных (одинаковых, парных) генов в парных хромосомах. Следовательно в опытах Винклера имел место настоящий перенос генетического материла. Это могла бы быть полиплоидизация из двух видов. При этом изменились рецепторы на поверхности половых клеток и стало возможным слияние.
Продолжу цитирование Глущенко (30): "Один из ведущих морганистов, доктор Дончо Костов, также активно выступал против мичуринского положения о взаимовлиянии, наблюдаемом при прививках. В 1936 г. Костов в своём выступлении на IV пленуме секции плодово-овощных культур Академии сельскохозяйственных наук им В. И.
Ленина, состоявшемся в Мичуринске, заявил, что «изменчивость в привое под влиянием подвоя обыкновенно бывает ненаследственной».
Каковы же экспериментальные материалы Костова?
Обратимся к его работе «Получение хромосомных аберраций генных мутаций у Nicotiana под влиянием прививок», опубликованной ещё в 1930 г. в Journal of Genetics (1930). С целью изучения вопроса о приобретённой иммунности у растений, Костов в 1929 г. произвёл ряд межродовых прививок; в частности, были привиты растения Nicotiana tabacum на Datura Wrightii, Nicotiana Langsdorffii и Petunia violacea на Solanum nigrum. При прививке Nicotiana tabacum на Datura Wrightii привои развивались нормально. Однако при цветении были замечены изменения в строении венчика и чашелистиков (рис. 4). Высшая степень неправильности в строении венчика и чашечки сопровождалась расстройством мейозиса в материнских клетках пыльцы, в результате было до 25–30 % абортивных пыльцевых зёрен. Непривитые (контрольные) растения, от которых были взяты побеги для прививки, никаких уклонений не дали.
В привитом растении Nicotiana Langsdorffii на Solanum nigrum также наблюдалось большое количество абортивных зёрен пыльцы (50 %), на ветках, близко расположенных от места прививки, процент их доходил до 70. Аналогичное поведение цветов на привое наблюдалось и в прививочной комбинации Petunia violacea на Solanum nigrum. Привой образовал около 12–15 % абортивных пыльцевых зёрен, между тем как растения, от которых были взяты привои, давали всего 1–0,5 % такого рода аномалий. Мейозис, нормальный во всех случаях у растений, от которых были взяты побеги для прививки, в привитых растениях был нарушен.
Характер нарушений мейотических фигур в привитых побегах оказался, согласно Костову, сходным во всех трёх комбинациях. Они напоминали картины, встречающиеся у межвидовых гибридов. В ранних анафазах отдельные хромосомы обычно опережают другие при расхождении к полюсам, а в поздних анафазах некоторые хромосомы отстают. В обоих делениях часто наблюдалось нерасхождение. В результате таких ненормальностей наблюдались пластинки с различными числами хромосом.
Костов не ограничился изучением прививок, а высевал и их потомства. От первой комбинации Ft привоя N. tabacum было получено 78 растений, из них большинство, как пишет Костов, «по-видимому совершенно нормальны, а 2 слегка отличались морфологически и характеризовались высоким процентом абортивных пыльцевых зёрен». Одно растение отличалось от остальных широкими листьями, раннеспелостью. В кончиках корешков этих растений чаще всего насчитывалось 72 хромосомы, но на отдельных пластинках наблюдалось 70 и 71 хромосома. В материнских клетках пыльцы этого растения обычно наблюдалось 37–39 хромосом.
Второе, резко изменённое растение было маленького роста, имело более удлинённые и мелкие листья. В кончиках корешков этого растения насчитывалось 59 хромосом. В пыльцевых клетках наблюдалось от 35 до 40 хромосом различных размеров.
Из семян нормального растения N. tabacum, от которого были взяты побеги для прививок, выращено 80 растений. Они были однородны и уклонений от внешне морфологической и цитологической нормы не дали. Как известно, у N. tabacum 2n = 24.
От второй комбинации F1 привоя N. Langsdorffii, содержащего 50 % абортивных пыльцевых зёрен, выращено 420 растений. Среди этого потомства было 12 растений, которые характеризовались особенно высоким процентом аномальной пыльцы; они же отличались от контроля внешним обликом, формой, окраской листьев и лепестков. Костовым исследовались цитологически растения № 913, 962, 1000, 1002, 1003, 1004. Растения 913,1000,1002 содержали около 65 %, растение 962—около 75 % абортивных пыльцевых зёрен.
Растения № 913, 1000, 1002 имели 18 соматических хромосом, т. е. нормальное число хромосом, свойственное материнскому растению. Растение № 1003 имело 19 соматических хромосом (рис. 5, 7), растение № 952—25 соматических хромосом (2) и растение № 1004— 21 соматическую хромосому (3).
У всех шести растений редукционное деление было неправильным. В материнских клетках пыльцы растения № 913 отсутствовала конъюгация, между тем как у материнского растения наблюдались четкие фигуры конъюгации. Растение № 913 было бесплодно. Растение № 962 обнаружило низкую плодовитость, растения № 1000 и 1004 были частично, а растения № 1002 и 1003— полностью плодовитыми.
В качестве контроля Костовым было выращено из семян 200 растений, от которых были взяты привои. Изменений среди этих ранений не было, и ни одно из них не содержало абортивных пыльцевых зёрен, подобно растениям потомства привоев. Костов изучил и второе поколение изменённых растений. Здесь расщепление было ещё более бурным, чем в первом. В частности, второе поколение N. tabacum (92 растения) дало разнообразие по размерам, форме и окраске органов. Были растения-карлики и высокие, и вся гамма переходов между ними. Окраска листьев варьировала от тёмной до светлозелёной, а сами листья были то чрезвычайно сочными, то слишком тонкими, нежными, как у паслёна. Листья по форме были линейные, продолговатые, яйцевидные, эллиптические, лопастные. Часть листьев была сидячей, часть с черешками. В некоторых случаях листья были тождественны листьям материнской формы.
Довольно сильная изменчивость наблюдалась и у цветков потомства привитого растения N. tabacum. Они дали изменение размеров, формы и окраски; окраска варьировала от светлорозовой до тёмнокрасной.
У 18 растений второго поколения изучалось поведение хромосом. Все растения дали резко выраженную картину увеличения количества хромосом.
Изучалось также второе поколение растений N. Langsdorffii от прививки на S. nigrum, в частности, потомства растений № 1002 и 1003.
В F2 растения № 1002 было выращено 62 растения. Все они имели внешний вид Langsdorffii, за исключением окраски пыльцы. F1 растения № 1002 имело голубые пыльцевые зёрна, подобно контролю, но они были несколько светлее окрашены. В F2 от этого же растения 16 растений имели белые пыльцевые зёрна, 29 — светлоголубые, как у материнского растения № 1002, и 17 — темноголубые пыльцевые зёрна, подобно контрольным растениям.
Большое разнообразие морфологического порядка дало также потомство растения № 1003. Особенно выделялись растения с чрезвычайно мелкими листьями (в два раза меньшими, чем у контрольных растений) и, наоборот, с мощными, широкими, сочными листьями.
Болгарский центральный земледельческий исследовательский и контрольный институт (г. София), директором которого ныне является доктор Дончо Костов, в 1947 г. выпустил первый номер «Известий». Вся книга посвящена большой работе Райны Георгиевой (сотрудницы Костова). Работа озаглавлена «Гибридная изменчивость при трансплантации некоторых Solanaceae». В связи с установлением факта влияния прививок на наследственные свойства растительных организмов и возможности получения вегетативных гибридов, Р. Георгиевой предпринят был ряд исследований. Опыты проводились над крупноплодными и мелкоплодными томатами, резко отличающимися по окраске, форме и размеру плодов, а также по типу, размеру листьев и по общему габитусу растений. Из крупноплодных томатов Георгиева брала в качестве прививочных компонентов сорта Пловдивский (красноплодный) и Золотой трофей (желтоплодный), из мелкоплодных красную и жёлтую сливы. Для межродовых прививок был взят в качестве одного из компонентов перец Сиврия № 47. В опытах Георгиевой применялась прививка в расщеп. Прививочные компоненты брались разновозрастные. Результаты опытов Георгиевой полностью подтверждают наши данные (Гпущенко, 1946). В частности, в семенном потомстве желтоплодных томатов от прививки на красноплодные получена вся гамма окраски плодов от жёлтых до красных, включая и жёлто-красные.
Выводы, к которым приходит Георгиева, следующие.
1. Через изменение питания, под влиянием прививки, могут изменяться наследственные качества и могут получиться в F1 растения гибридного характера.
2. Изменения гибридного характера в F1 получаются при существенном различии в возрасте компонентов.
3. Необходимо, чтобы компонент, на который оказывается воздействие, был в ранней стадии своего развития.
Это может быть достигнуто при наличии оптимальных условий для развития растения, над которым производятся опыты.
Каждая причина, которая задерживает рост растения, в результате приводит к работе со стадийно старыми растениями, и выводы из полученных данных будут неточны.
4. Удачное манипулирование с ассимилирующей массой компонентов при прививке оказывает громадное влияние на изменения наследственных качеств.
Компонент, на который мы желаем оказать воздействие, должен быть лишен своей листовой массы; она должна быть заменена листовой массой другого компонента. Реакция против чужой ассимилирующей массы очень сильна, но при внимательном уходе некоторое количество растений воспринимает чужую для них пищу, и изменённое органическое питание оказывает влияние на наследственные качества.
5. При межродовой прививке Пловдивский томат/перец Сиврия № 47, замена листьев привоя листовой массой подвоя (перец) вызывает очень острую реакцию в привое (видоизменение у цветковых частей, опадение цветочных почек, партенокарпические плоды).
Получение большого количества плодов со всхожими семенами является результатом индивидуальных различий отдельных растений, причём некоторые из них, несмотря на сильно изменённый химизм, оплодотворяются и дают плоды с нормально развитыми семенами.
6. Так как растения при прививке проявляют существенные индивидуальные различия, то для получения изменения необходимо производить опыты над большим количеством растений.
7. Чтобы избежать неточностей, которые могут получиться от нечистого материала, каждое привитое растение должно иметь в качестве контроля то же растение, от которого взят привой.
8. В плодах привоя, в большинстве случаев, изменения незначительны или их вообще нет. Они обыкновенно получаются в F1 Вот почему необходимо терпеливо исследовать F1 на большом количестве растений.
9. Разнообразие в размере, форме и цвете плодов получается не только в отдельных растениях, но и в пределах одного растения и одной плодовой кисти.
10. Морфологические, физиологические и биохимические изменения при прививке (изменение форм, размера и окраски плодов, полная партенокарпия в наиболее изменившихся плодах, большое количество крахмала в клетках плодов, опадение цветочных почек и пр.) дают основание считать, что для уяснения процессов наследственности необходим не только морфологический анализ, но и глубокое физиологическое и биохимическое изучение.
11. Большое разнообразие форм в F1 полученных при прививках, является богатым материалом как для селекции, так и для дальнейшего изучения проблем, связанных с вегетативной гибридизацией.
В заключение необходимо отметить, что к работе Р. Георгиевой приложено большое количество красочных иллюстраций с натуры, аналогичных нашим, опубликованным в «Агробиологии» № 3 за 1946 г.
Заслуживают внимания работы В. Е. Писарева, публикация которых относится к 1944 г. Упомянутому автору необходимо было получить межродовые гибриды между пшеницей и рожью, пшеницей и элимусом. Если первая комбинация удаётся иногда с большим трудом, то вторая, по заявлению Писарева, получена «впервые в истории селекции зерновых злаков». Селекционер шёл путём вегетативной гибридизации. Зародыш воспитывался на чужом эндосперме. Техника заключалась в том, что у сухой зерновки лезвием безопасной бритвы срезался зародыш со щитком. Затем этот зародыш переносился на эндосперм зерновки, у которой предварительно был удалён зародыш.
Приклеивался зародыш клейстером, приготовленным из муки того же рода, к которому относился эндосперм — подвой.
«Для опыта, — пишет Писарев, — нами была взята яровая пшеница Lutescens 062, трудно скрещивающаяся с рожью. Зародыши Lutescens 062 были пересажены на эндосперм яровой ржи из Восточной Сибири. Растения пшеницы, выросшие на ржаном эндосперме, не показали морфологических отличий от контрольных. Различия обнаружились на зерне. Зерно от растений, выросших на эндосперме ржи, отличалось от контрольного тусклой окраской и меньшей стекловидностью и, что особенно интересно, уклонялось по форме. Оно характеризовалось некоторой угловатостью, имело сильно развёрнутую бороздку и меньшую длину — появились бочёнкообразные зёрна. Обычный анализ показал значительные изменения химического состава зерна…».
Зерно полученное от прививки, изучалось А. А. Шмуком. Исследования Шмука показали, что трифруктозан, являющийся специфическим углеводом зерна ржи в отличие от зерна пшеницы, в контрольном материале отсутствует. Пять граммов муки привитой пшеницы дали 0,14 г трифруктозана.
Согласно сообщению Писарева, клейковина, выделенная из муки контрольной пшеницы, имела обычную светлорозовую окраску; клейковина же подопытного варианта имела цвет ржаного теста (темнобурая окраска). Писарев проводил серию опытов по скрещиванию привитых пшениц Lutescens 062, гибрида 170 и Авроры с рожью. Во всех случаях он получил закономерный эффект. Так, например, скрещивание обычных (контрольных) растений Lutescens 062 с рожью дало всего 4,3 % завязавшихся зёрен, привитые же растения этих компонентов дали 25 % зерна. Соответственные показатели по сорту гибрида 170 равнялись 3,4 и 11,5 %, по сорту Аврора — 2,8 и 19,2 %.
Писарев приходит к следующему выводу: «Таким образом, сдвиг биохимической характеристики в яровой пшенице под влиянием пересадки её зародышей на эндосперм яровой ржи в сторону последней повлиял в значительной степени и на повышение процента гибридного зерна в межродовом скрещивании».
Писарев провёл ещё один любопытный опыт, основанный на вегетативном сближении двух нескрещивающихся родов — Triticum vulgare и Elymus arenarius.
В основу была положена та же методика. По заявлению Писарева «лучшие результаты получались в тех случаях, когда и материнское и отцовское растения были «привиты» на эндосперм компонента. Так, яровая пшеница 1803, трижды выросшая на эндосперме Е. arenarius 19, при опылении пыльцой последнего дала 1,55 % завязавшихся зёрен. В том случае, когда пыльца была взята с элимуса, выросшего на эндосперме пшеницы 1803, процент удачи равнялся 7,5; яровая пшеница Prelude, несмотря на двухкратную прививку на эндосперм элимуса, при скрещивании дала 0,0 %, но при опылении элимусом, выросшим на эндосперме пшеницы, процент зёрен был уже 3,1. Гибридная пшеница ВЕП2, дважды привитая на элимусе, при опылении пыльцой обычного элимуса, дала 0,4 % зёрен, а при использовании пыльцы «привитого» элимуса — 1,7 % и т. д.».
Несколько лет назад сотрудник Научно-исследовательского института им. И. В. Мичурина, Исаев, скрестил мичуринский сорт Ренет бергамотный с яблоней Пепин шафранный. В 1945 г. сеянец принёс первые плоды, которые по форме, подобно тому, как у Мичурина пятьдесят лет назад, дали плоды, в своих признаках напоминающие грушу.
Роль питания в изменчивости растительных форм, управление им посредством прививок с особой силой подчёркивал и Люсьен Даниель, посвятивший такого рода экспериментам 60 лет своей жизни. Даниель считает и экспериментально доказывает, что в привитых растениях меняется химическое строение во всём растении. Всё это не может не отразиться и на потомстве. Так как плодовые растения являются многолетниками, они неудобны для изучения потомства с точки зрения наследования приобретённых свойств в год прививки. Для этого Даниель избрал главным образом однолетние и двухлетние травянистые растения.
Этот талантливый биолог и практический деятель получил большое количество убедительных доказательств того, что при прививке изменяются не только привитые компоненты, но и их семенное потомство. Приведём несколько примеров из экспериментальных работ Люсьена Даниеля.
В одном из опытов молодые цветочные почки турнепса (Brassica campestris rapifera) прививались на капусту (Brassica oleracea var. capitata). Эти две привитые формы отличаются друг от друга не только своими морфологическими признаками, но и разным отношением к низкой температуре. Прививки удались хорошо, соцветия развивались сильно, дали много цветков и семян. Семенное потомство привоя испытывалось ряд лет. Уже в первом поколении потомки резко отличались от контроля и друг от друга. Стебли оказались в различной степени клубневидными, вздутыми и удлинёнными; листья, сидевшие очень тесно, были более развиты, чем у контроля, но остались разъединёнными, не образовав головки. Главное же. достоинство новообразованных форм заключалось в том, что они оказались довольно морозостойкими, выдержав — 13 °C, тогда как контроль (растения непривитого турнепса) погиб полностью. Эта форма вегетативного гибрида нашла себе применение в производстве из-за таких её показателей, как урожайность и хорошие вкусовые качества.
Занимался Даниель улучшением дикой моркови (Daucus carota) путём прививки на культурную морковь (Daucus sativus). По внешнему виду эти два типа отличаются по форме розетки листьев и окраске корня. У первого (дикой моркови) листья распростёрты, корни белые, у второго — листья расположены вертикально, а корни имеют оранжево-красную окраску.
Дикая морковь полностью использовала запасные вещества культурной формы; вследствие такого обильного питания привой дал мощные стебли и листья. Соцветия были многочисленнее, имели больше цветков, чем контроль, и образовали большие семянки, снабжённые длинными шипами.
Потомство семян дикой привитой моркови дало сильно отличающиеся по виду растения. Некоторые из них своим белым, слегка вздутым корнем и розеткой распростёртых листьев напоминали дикий вид. Другие имели более или менее толстый белый или желтоватый корень. Третьи имели хороший культурный корень и несли маленькую розетку распростёртых листьев, как у дикой формы. Неоднократный посев потомства всех этих растений Даниелем показал, что изменения наследуются и в дальнейшем.
В 1933 г. М. В. Алексеева привила на пасленовые (табак, дурман) черенки помидора (тело помидора). Было обнаружено, что листья томата, привитого на табак, содержат никотин, а в плодах томата, привитого на дурман (датура страмониум) появился атропин. Наиболее существенным доказательством открытия было изменение формы плода от прививки на дикорастущей солянум дулькамара. Следовательно, в привитое растение (привой) переносится наследственная информация. Причем данная информация потом обнаруживается в семенах привоя.
М. В. Алексеева (1939, 1940) производила прививки растений семейства Solanaceae. В качестве привоев ею взяты три селекционных сорта томатов Спаркс, Датский экспорт и Пандероза, которые прививались на картофель, сладко-горький паслён, махорку, дурман и т. д. Наибольший интерес представляет межродовая прививка томата Пандероза на сладко-горький паслён, в семенном потомстве которой получены плоды, резко изменённые по форме, камерности и строению кисти. Контроль, непривитые растения Пандероза, были типичны.
Некоторые морфологические изменения дало семенное потомство томата Спаркс от прививки его на картофель Эпикур. Изменения заключались в том, что часть растений заканчивалась кистью, в то время как у томата этого явления обычно не бывает. Сами же плоды особых уклонений от нормы не дали. Здесь интересно отметить, что Полякова (Ленинградский государственный университет) в 1941 г. проверила эти вегетативные гибриды с цитологической стороны. Оказалось, что семенное потомство Пандерозы от прививки на сладко-горький паслён уклонений от нормы не дало, хотя, подчёркиваем, здесь получена особо резкая морфологическая изменчивость. Вегетативный гибрид Спаркс от прививки на картофель в соматических клетках дал сильные нарушения, в частности, значительно увеличилось количество хромосом в сторону подвоя. У томата, как известно, 2n= 24, у картофеля 2п = 48. Гибрид же между ними имеет клетки с количеством хромосом 48, 50, 51…
Рассматривая данные Алексеевой, мы вполне согласны с её выводом, что влияние подвоя сказывается адекватно не только на привитом организме, но и на его семенном потомстве"
[МОЙ КОММЕНТАРИЙ: Т. Лысенко вместе со своей ученицей М. В. Алексеевой. Лысенко предположил, что если заставить столоны одного сорта картофеля питаться пластическими веществами продуктов ассимиляции листьев другого сорта картофеля, то должны получаться гибридные клубни. Они будут обладать в той или иной мере свойствами и одного и другого сорта. Для этого путём прививки необходимо объединить два сорта картофеля в один организм. Проверочные опыты в теплицах, проведённые в феврале — апреле 1938 г. рядом научных сотрудников и аспирантов в Селекционно-генетическом институте (Одесса) и группой студентов Сельскохозяйственной Академии им. К. А. Тимирязева, полностью оправдали его предположения — получились клубни картофеля, на которых ясно видны свойства обоих родителей. Как видим, в опытах Алексеевой без всякого сомнения имеется перенос генетического материала между подвоем и привоем].
В… [своей]работе Яковлев (1946) описывает следующий эксперимент по изменению плодов у молодого гибридного сеянца груши под влиянием ментора айвы. Сеянец от гибридизации мичуринского сорта груши Дочь Бланковой с грушей Бергамот Эсперена в 1939 г. был привит на айву во многих вариантах. В одном варианте ментором для гибридного сеянца служила одна корневая система айвы, а вся крона была представлена грушей; затем следовали варианты с постепенной заменой кроны груши айвой. Крайний вариант эксперимента был представлен в целом кроной айвы, а у привитой на неё груши был лишь один небольшой побег длиной в 37 см. В 1946 г. к плодоношению пришли только крайние варианты, т. е. полная крона и небольшой побег груши, привитых на айве.
Гибрид груши первого варианта принёс плоды совершенно грушевого типа, очень сочные, не уступающие по вкусу лучшим западноевропейским сортам. Плоды имели грушевидную форму с белой нежной мякотью, тающей консистенции (рис. 13). Окраска кожицы плодов светлозелёная, со слабым желтоватым оттенком и подкожными пятнышками зеленоватого цвета.
Растения второго варианта опыта дали совершенно иного типа плоды. По форме они были сходны с бергамотом, окраска их темно-коричневая, с многочисленными подкожными пятнами буроватого цвета. Мякоть темножёлтого цвета, плотная, с мускатным привкусом и ароматом айвы, с довольно выраженными грануляциями. Вкус мякоти и плотность её строения во многом напоминали айву.
«В результате многих лет работы с менторами, — пишет в статье Яковлев, — теперь твёрдо установлено, что чем больше листьев имеется у ментора, тем сильнее изменяется воспитываемый им гибридный организм. Под влиянием ментора изменяются не только биохимические свойства клеток, но, что более интересно, изменяется форма, уклоняясь к форме плодов ментора». (конец цитаты).
Далее Глущенко (30) самым тщательным образом описывает свои опыты. Сначала И. Е. Глущенко (1938) описывает особую технику прививки картофеля и её результаты: "Цилиндрической трубкой диаметром в 1 сантиметр вырезался глазок у сорта Оденвальдский синий. Этой же трубкой просверливался клубень белоклубневого сорта Эпикур, и в отверстие вставлялась «свеча» с глазком Оденвальдского синего. На подвое (Эпикуре) все собственные глазки были удалены. В дальнейшем такие клубни помещались в вазоны с промытым песком. Цель опыта сводилась к тому, чтобы заставить привитой глазок синеклубневого картофеля питаться веществами белоклубневого. Срастание в этих случаях происходило довольно трудно и длительно. Приживание составляло всего около 8 %. Привитые растения Оденвальдского синего дали белоклубневое потомство. Высаженные белые клубни дали потомство с белой и синей окраской. Эти растения были прослежены до третьего вегетативного потомства; изменения сохранялись. Автором повторялись эти опыты. Результаты были те же.
Во второй работе (1945) автором приводятся данные по прививкам между диким видом картофеля S. acaule и S. tuberosum. В условиях Москвы S. acaule при обычной длине дня клубней не образует. При прививках на него сеянцев культурного сорта Эпрон клубни завязываются в зависимости от состояния привоя. При хорошо развитом ассимиляционном аппарате последнего клубни всегда образуются, при слабом развитии привоя клубни отсутствуют. При обратных прививках (сеянцы Эпрона — подвой, S. acaule — привой) обратная закономерность: при мощном развитии привоя сеянцы культурного сорта клубней не дают, при слабом развитии — клубнеобразование происходит.
В 1945 г. автором опубликовано сообщение о том, что в семенных потомствах от прививки сортов томатов Золотая королева с Фикарацци, Гольден с Мексиканским 353 и др. получены формы, несущие в пределах растения признаки обоих прививочных компонентов (жёлтые и красные плоды в пределах кисти и т. д.). Отмечается высокая продуктивность этих форм. В дальнейшем (1946) автор описывает вегетативные гибриды томатов с изменённой окраской плодов и характер наследования её вплоть до четвёртого семенного поколения" (конец цитаты). Как видим, в тщательно проведенных экспериментах Глущенко на пасленовых признаки вегетативной гибридизации были очевидны.
В своей брошюре Глущенко ссылается на довольно многочисленные зарубежные работы (в том числе японские, французские и т. п.), где вегетативная гибридизация подтверждается. По словам профессора Мацуура, сказанным самому Глущенко, Мичуринским движением в Японии охвачено, свыше ста тысяч опытников. Издается обширная мичуринская литература: «Избранные труды» Мичурина {в двух томах); «Избранные труды» Лысенко (в двух томах); «Две генетики» Токуда Митоси (в двух томах); «Руководство по яровизации» Кикучи; «Гнездовые посадки (теория и практика)» Камеи; «Стадии развития и ветвления пшеницы» Иосика и Такасима; «Записки о поднятии урожайности на основе мичуринских методов»; сборник статей «О советской биологии» под редакцией и с предисловием профессора Усами; комплекты еженедельной газеты «Мичуринское сельское хозяйство» и т. д. (31).
Как видим, мичуринское направление генетики подтверждалось многочисленными практическими работами по выведению новых сортов растений. Эти свидетельства приведены в выступлениях учёных на сессии ВАСХНИЛ 1948 г. Мичуринцы демонстрировали достижения селекции и успехи применения метода вегетативной гибридизации. Мичуринцы хорошо знали микроскопическое строение клеток растений. Об этом сказала профессор из Киева. Она знала, что плазмодесмы слишком малы для того, чтобы по ним проходили хромосомы. Кроме того, число хромосом при вегетативной гибридизации не увеличивалось.
Наследование признаков при вегетативном наследовании факт, который установили даже противники вегетативной гибридизации типа Винклера. Этому факту должны были быть найдены объяснения. Лысенко, по крайней мере, пытался это сделать. Формальные же генетики просто отрицали эксперименты. Объяснения критиков вегетативной гибридизации не адекватны. Особенно, когда дело касается сортов, где есть накапливаемые в результате искусственного отбора фенотипические признаки. Другой вопрос, что никто не мог объяснить молекулярные механизмы изменений фенотипа, которые наблюдались как у подвоя, так и у привоя.
Странно, но, по сути, так никто не повторил работы Лысенко, Глущенко и других советских авторов, которые были выполнены очень тщательно. Советские исследователи убедительно доказали, что при вегетативной гибридизации приобретенные свойства передаются по наследству в ряду поколений, хотя большей частью и не половым путем. Почему же тогда без всякого сомнения все эти интереснейшие результаты были отвергнуты формальными генетиками? Видимо, вплоть до недавнего времени генетики просто не знали, как объяснить эксперименты Мичурина и Лысенко с вегетативной гибридизации, то есть при пересадке привоя на подвой. Самое интересное, что даже сейчас многие практические приемы, которые использовал Мичурин, не имеют удовлетворительного теоретического объяснения. И только самые последние наблюдения показали, что Лысенко прав и такие механизмы существуют. Ниже я очень кратко на них остановлюсь.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК