Формирование воздушной среды в марсианских ТБС-поселениях

We use cookies. Read the Privacy and Cookie Policy

Формирование воздушной среды в марсианских ТБС-поселениях

Задача проектирования ТБС для условий Марса является на порядки более сложной, чем для любых земных (к примеру, Арктики). Главным затруднением такого проекта является отсутствие на Марсе привычного для Земли, дарового воздуха. На Марсе воздух придется делать в буквальном смысле этого слова. Исходным сырьем данного производства должны стать газы марсианской атмосферы.

В данной главе предварительно рассматриваются общие принципы формирования воздушной среды в марсианской ТБС.

Потребности человека в кислороде

Уровень кислорода у поверхности Земли колеблется незначительно: от 20,7 % до 20,95 %. Выраженное ухудшение самочувствия, снижение работоспособности у людей наблюдаются при очень значительном падении содержания кислорода — до 15–17 % (при норме — почти 21 %) (при н. у.).

Общее количество воздуха, проходящее через легкие в единицу времени, называется легочной вентиляцией и измеряется в л/мин. В состоянии покоя легочная вентиляция равна 5–6 л/мин, при физической нагрузке она увеличивается до 60–80 л/мин.

Процентное содержание кислорода во вдыхаемом воздухе составляет 21 %. Однако при дыхании используется не весь кислород. Значительная его часть выдыхается. В выдыхаемом воздухе содержится не меньше 16 % кислорода. Таким образом, при легочной вентиляции в 6 л/мин усваивается 0,3 л/мин кислорода.

При потреблении 1 (н) л кислорода (количество потребляемого кислорода, как и выделяемого углекислого газа, обычно измеряется в так называемых «нормальных литрах» (н) л, приведенных к нормальным условиям при давлении 101,3 кПа и температуре 0 °С) человек выделяет примерно 19–21 кДж (4,6–5 ккал) тепла. В среднем может быть принят энергетический эквивалент 1 (н) л кислорода 20 кДж, а 1 г кислорода — 14 кдж.

Потребление кислорода в среднем на одного человека составляет 22 (н) л/ч или 528 (н) л/сут.

Человеку массой порядка 80 кг потребуется в среднем 26,4 (н) л/ч.

Средние экспериментальные данные о легочной вентиляции, истинном количестве потребляемого кислорода и тепловыделении приведены в нижеследующей таблице:

Табл. 1. Средние экспериментальные данные о теплопродукции, легочной вентиляции, истинном количестве потребляемого кислорода у человека массой 60–70 кг, ростом 170–180 см Состояние организма; характеристика выполняемой работы Легочная вентиляция, (н) л/мин Истинное потребление кислорода, (н) л/мин Теплопродукция Вт ккал/мин Покой 5–6 0,25–0,3 83–105 1,25–1,5 Очень легкая работа 6–10 0,3–0,5 105–175 1,5–2,5 Легкая работа 10–16 0,5–0,8 175–280 2,5–4,0 Средняя работа 16–25 0,8–1,2 280–420 4,0–6,0 Тяжелая работа 25–40 1,2–2,0 420–700 6,0–10,0 Очень тяжелая работа 40–50 2,0–2,5 700–874 10,0–12,5 Чрезвычайно тяжелая работа 50–60 2,5–3,0 874–1050 12,5–15,0 Изнурительная работа Более 60 Более 3,0 Более 1050 Более 15,0

Углекислый газ

Содержание диоксида углерода в атмосферном воздухе Земли относительно постоянно и составляет 0,03–0,04 %. Содержание диоксида углерода в городском воздухе может быть выше, чем в чистой атмосфере, и составлять до 0,05 %.

При вдыхании больших концентраций углекислого газа нарушаются окислительно-восстановительные процессы. Чем больше диоксида углерода во вдыхаемом воздухе, тем меньше его может выделить организм. Накопление диоксида углерода в крови и тканях ведет к развитию тканевой аноксии. При увеличении содержания углекислого газа во вдыхаемом воздухе до 3–4 % отмечаются симптомы интоксикации, при 8 % возникает тяжелое отравление и наступает смерть.

ПДК диоксида углерода в воздухе лечебных учреждений равна 0,07 %, а в воздухе жилых и общественных зданий — 0,1 %. Последняя величина принимается в качестве расчетной при определении эффективности вентиляции жилых и общественных зданий.

Азот

Азот по количественному содержанию является наиболее существенной частью атмосферного воздуха.

Азот принадлежит к инертным газам, он не поддерживает дыхание и горение, жизнь в атмосфере чистого азота невозможна. Однако в природе нашей планеты происходит его круговорот. Азот усваивается некоторыми видами бактерий почвы, а также сине-зелеными водорослями.

Азот является своеобразным разбавителем кислорода, выполняя в этой связи жизненно важную функцию, т. к. дыхание чистым кислородом приводит к необратимым изменениям в организме. При этом отмечено, что его повышенное содержание во вдыхаемом воздухе способствует наступлению гипоксии и асфиксии вследствие снижения парциального давления кислорода. При увеличении содержания азота до 93 % наступает смерть. Наиболее выраженные неблагоприятные свойства азот проявляет в условиях повышенного давления, что связано с его наркотическим действием. Известна также его роль в происхождении кессонной болезни.

Принципиальная схема газовых потоков ТБС

Рис. 1. Схема газовых потоков ТБС.

Обозначения на схеме:

1 — Блок газоразделительного оборудования.

2 — Камеры составления воздушной смеси.

3 — Блок водорослей.

4 — Химические производства.

5 — Жилая зона.

6 — Камеры промежуточного обогащения воздуха кислородом и удаления углекислого газа.

7 — Рабочая зона.

8 — Зона растениеводства.

Описание схемы:

Потоки газов обозначены на схеме буквой «П» с соответствующими индексами.

В ТБС поступает смесь газов из атмосферы Марса. Состав смеси представлен в таблице 2.

Табл. 2. Химический состав атмосферы Марса по его четырем основным компонентам (по объему) Составляющая Доли в единице объема Молекулярная масса CO2 0,95 44 O2 0,02 32 Ar 0,016 40 N2 0,027 28

В Блоке газоразделительного оборудования (1) происходит разделение атмосферной смеси на составляющие ее газы, которые частично поступают в Камеры составления воздушной смеси (2) (П-3, состоящий из O2, N2, Ar) для приготовления пригодной для дыхания человека и животных воздушной смеси, частично идут в химическое производство (4) (П-1, состоящий из CO2, а также CO и других вредных для дыхания примесей), частично идут в Блок водорослей (3) (П-2, состоящий из CO2, N2, O2). В Блоке водорослей (3) происходит переработка CO2 в органическое вещество и O2, который вместе с газовой смесью с участием азота поступает в Камеры составления воздушной смеси (2) (П-4, состоящий из O2). В Камере составления воздушной смеси (2) из поступающих газов составляется дыхательная смесь, соответствующая составу земной атмосферы (газовый состав сухой земной атмосферы дан ниже, см табл. 3). Воздух после составления идет в Жилую зону (5); таким образом, проходящий через нее воздух будет соответствующим земному эталону. Из Жилой зоны (5) через Камеры промежуточного обогащения воздуха кислородом (6) воздух поступает в Рабочую зону (7) и далее идет в Зону растениеводства (8), где, в отличие от прочих зон (Жилой, где состав воздуха соответствует земному эталону и Рабочей, где состав воздуха близок к земному эталону), газовый состав может иметь меньшее содержание кислорода и большее — углекислого газа, т. к. условия в этой зоне должны быть рассчитаны на благоприятный режим для роста и развития растительной массы. В определенных случаях (масштабные сезонные работы, к примеру — сбор урожая) в секциях Зоны растениеводства (8) могут быть устраиваемы нормальные условия с составом воздуха, соответствующим земному, но в остальное время для этой зоны представляется более выгодным режим, когда отработанный в других зонах воздух поступает туда без дополнительного обогащения кислородом.

Воздух из Зоны растениеводства (8) отбирается в Камеры промежуточного обогащения кислородом и удаления углекислого газа (6), а также частично изымается из системы. Изымаемый воздух направляется на Блок газоразделительного оборудования (1) (П-7, состоящий из CO2, O2, N2, Ar). Таким образом, с одной стороны, в предложенном варианте в системе имеется некоторый внутренний круговорот, который призван уменьшить затраты энергии на газоразделение, а с другой — в Жилой зоне (5) состав воздуха всегда соответствует эталонному.

Попытка построения модели замкнутой СЖО была предпринята в Америке. Речь идет об известном эксперименте «Биосфера-2», в котором был сделан расчет на то, что в ограниченной замкнутой среде, герметически отделенной от остального мира, удастся воссоздать замкнутый газовый цикл. То есть, что CO2, выделяемый в процессе дыхания человеком и животными, будет поглощаться и перерабатываться растениями в O2, как это происходит в естественных условиях природы Земли. Однако этого, как известно, не произошло и газовый баланс «Биосферы-2» оказался смещенным в сторону большего содержания углекислого газа. Тем не менее, несмотря на то, что с помощью обычных растений полная переработка избыточных количеств углекислого газа оказалась в малых объемах невозможна, этот процесс будет в определенной мере происходить и в Зоне растениеводства (8), при некоем общем избыточном содержании CO2 часть его будет постоянно в ходе процессов фотосинтеза растений переходить в O2. Таким образом, осуществляя здесь частичное очищение воздуха от CO2 и обогащение его O2, мы получаем также возможность возвращения этого воздуха после его дополнительной обработки в Камерах промежуточного обогащения кислородом и удаления углекислого газа (6) в газовый цикл ТБС. В Камерах (6), помимо собственно обогащения воздуха кислородом (поток П-5, состоящий из O2), возможно изъятие избытков углекислого газа с помощью восстанавливаемых реагентов (поток П-8, состоящий из изъятого CO2).

Поставщиками кислорода для Камер составления воздушной смеси (2) и Камер промежуточного обогащения воздуха кислородом и удаления углекислого газа (6) является Блок водорослей (3), где происходит переработка углекислого газа в кислород (П-4, состоящий из O2) с помощью устройств, в которых поддерживается жизнедеятельность биомассы культур простейших водорослей. (Аналогом подобных устройств является, к примеру, разработанная в России система «Биос».)

Углекислота может вводиться в автотрофно выращиваемые культуры водорослей различными методами. Наиболее распространенный способ — это подача углекислоты в виде газовоздушной смеси, осуществляющей, помимо снабжения водорослей источником углерода, функцию перемешивания культуры. Найденные применительно к условиям высокоинтенсивного культивирования хлореллы насыщающие и полунасыщающие концентрации CO2 не превысили значений 1,6–1,7 % CO2 в газовой фазе (35–40?10?5 моля растворенной CO2 на 1 л) при насыщающих интенсивностях света и плотности суспензии 600 млн. клеток в 1 мл.

Изучение зависимостей роста водорослей от условий показывает, что при наибольшей насыщающей интенсивности света продуктивность культуры в 4 раза выше при концентрации 1 %, чем при 0,25 % CO2 и обратно: при одной и той же концентрации CO2 продуктивность тем выше, чем выше интенсивность света. А чем выше продуктивность культуры, тем большее количество углекислого газа будет переработано в кислород.

Биомасса водорослей, получаемая при этом процессе, может быть использована как источник белка и физиологически активных соединений и идти как на корм сельскохозяйственным животным, так и непосредственно в питание человеку.

Табл. 3. Состав сухой атмосферы Земли (по объему) Составляющая Доли в единице объема Молекулярная масса N2 0,780840 28 O2 0,209476 32 Ar 9,34?10?3 40 CO2 3,14?10?4 44 Ne 1,818?10?5 20,2 He 5,24?10?6 4 CH4 2?10?6 16 Kr 1,14?10?6 83,8 H2 5?10?7 2 O3 4?10?7 48 N2O 2,7?10?7 44 CO 2?10?7 28 Xe 8,7?10?8 131,3 NH3 4?10?9 17 SO2 1?10?9 64 NO2 1?10?9 46 NO 5?10?10 30 CCl4 1,2?10?10 154 H2S 5?10?11 34 HBr, BrO примерно 10?11 81; 96

Представляется естественным, что при составлении искусственной атмосферы ТБС не будет никакой необходимости в полном повторении состава земного воздуха, включая все микровключения. Состав искусственного воздуха может быть предположен следующим: N2 — около 78 % (может варьироваться в сторону уменьшения за счет некоторого увеличения доли других компонентов), O2 — 21 % (или более), Ar — 1 % и более. Для дальнейших расчетов в этой работе будет принят состав: N2 — 78 %, O2 — 21 %, Ar — 1 %.

Первичные расчеты показывают, что при переработке 1000 м3 марсианской атмосферной смеси (при «марсианских условиях» — м. у.), получим порядка 1,95 кг N2 (27 м3 (м. у.)), 1,65 кг O2 (20 м3 (м. у.)), 1,65 кг Ar (16 м3 (м. у.)), а также 104,75 кг CO2 ((937 м3 (м. у.)).

На формирование воздушной смеси (состав: N2 — 78 %, O2 — 21 %, Ar — 1 %) объемом 1000 м3 (н. у.) потребуется порядка 975 кг N2 (780 м3 (н. у.)), 300 кг O2 (210 м3 (н. у.)), 18 кг Ar (10 м3 (н. у.)).

Для того, чтобы получить из марсианской атмосферы такое количество N2, необходимо переработать порядка 500?103 м3 атмосферной смеси.

Из этого объема при этом также будет выделено: 825 кг O2, 825 кг Ar и 52375 кг CO2.

При этом следует учитывать, что необходимость в постоянной подпитке ТБС компонентами для составления воздушной смеси извне будет значительно уменьшена за счет внутрисистемного восстановления отработанной воздушной смеси. Так, азот может внутри системы ТБС циркулировать очень долго и его количество будет лишь немного уменьшаться за счет вовлечения в круговорот азота в биогеоценозах Зоны растениеводства (8), а, изымаемый из системы вместе с отработанным воздухом, он может быть вновь выделен в Блоке газоразделительного оборудования (1) и снова вовлечен в круговорот воздуха. Кислород, перешедший в отработанном воздухе в состояние углекислого газа, может быть частично восстановлен в Зоне растениеводства (8) или полностью в Блоке водорослей (3). Также углекислый газ должен удаляться в Камерах промежуточного дообогащения воздуха кислородом (6), будучи связываем там восстановимыми химическими поглотителями (к примеру, ХПИ (химический поглотитель известковый) — Ca(OH)2, окисью кальция и т. п.). Таким образом, кислород и углекислый газ будут переходить друг в друга внутри системы, азот также будет циркулировать в ней и подпитка ТБС из атмосферы должна оказаться относительно невелика по отношению к циркулирующим внутри системы воздушным потокам, компенсируя потери газов ТБС в окружающую среду.

Являясь по своему характеру предварительной, данная глава этой работы ставит больше вопросов, чем решает. Вопросы, поставленные ею, представляются весьма важными для решения задач проектирования марсианских ТБС. Однако при этом, все вопросы представляются разрешимыми, а препятствия — принципиально преодолимыми.