За морем телушка — полушка
За морем телушка — полушка
К сожалению, рентабельность зависит не только от масштабов производства. Как видно хотя бы из опыта уже двух газовых войн Украины с остальной Россией, транспортные расходы способны повлиять на экономические показатели проекта ничуть не меньше, чем собственно производственные.
В частности, линии электропередачи к потенциальным потребителям в Западной Европе не только потребуют капиталовложений, сопоставимых с расходами на магистральные газопроводы. Они ещё и преобразуют заметную долю перекачиваемой по ним энергии в тривиальное и никому не нужное тепло. Борьба с законом Ома отнимает заметно больше сил, нежели, к примеру, перекачка газа — хотя и на обслуживание насосных станций на магистральных газопроводах также тратится немалая мощность.
Выход из положения теоретически общеизвестен. Сверхпроводящий кабель вовсе не создаёт сопротивления и не поглощает энергию. Правда, материалы для его изготовления недёшевы — но по сравнению с десятками или даже сотнями ядерных реакторов тысячи километров кабеля почти незаметны.
Увы, сверхпроводимость оплачивается не только ценой кабеля. Куда важнее, что наблюдается она только при сверхнизких температурах. Расходы на охлаждение кабеля нынче — при всём совершенстве современной теплоизоляции — многократно превосходят затраты на прокачку газового потока, сопоставимого по содержащейся в нем мощности.
Впрочем, рецептуры сверхпроводников совершенствуются. Ещё недавно эффект наблюдался только при охлаждении жидким гелием — до 4.2 Кельвина. Открытые около двадцати лет назад керамические материалы сверхпроводимы при температуре жидкого водорода — 21 К. Есть уже и вещества, работоспособные при температуре жидкого азота (80 К) и даже углекислоты (200 К) — но пока слишком хрупкие для надёжного кабеля. Когда проблема решится, сверхпроводящий кабель станет рентабельнее не только газопровода, но и любого другого ныне существующего способа энерготранспорта — ведь каждый лишний десяток градусов увеличивает энергозатраты на охлаждение раза в два.
Правда, каждый шаг по температурной шкале требует изрядных исследований не только новых рецептур, но и новых классов материалов. Как отмечено выше, первый же крупный скачок прогресса потребовал перехода от сплава к керамике. Что потребуется для следующего прорыва — пока неясно.
Так что любой эксперимент в этой сфере должен сопровождаться крупномасштабными теоретическими исследованиями. По счастью, как раз в нашей стране достижения теоретиков на данном направлении громадны. Достаточно напомнить: теорию сверхпроводимости создавали — после первых концептуальных успехов Бардина, Купера и Шриффера — именно отечественные физики Гинзбург, Ландау, Абрикосов и Горьков. Не зря Гинзбург и Абрикосов удостоены Нобелевской премии (Ландау награждён за более ранние достижения). Научная школа исследований по квантовой физике в целом и теории сверхпроводимости в частности у нас всё ещё высоко развита. И можно надеяться: целенаправленная поддержка этой школы способна в обозримом будущем дать принципиально новые результаты с неисчерпаемым выходом в практику.
По академическим меркам затраты на такую поддержку должны быть грандиозны. Но на фоне общего бюджета столь же грандиозного ядерного комплекса они окажутся почти неощутимы.
Вдобавок следует учесть: научная теория никогда не бывает узконаправленной. Наряду с ожидаемыми результатами она всегда приносит и что-то непредвиденное. Причём польза от непредвиденных достижений зачастую многократно превосходит планируемый эффект.
В данном случае главным достижением окажется сам факт развития наук и интеллектуальных технологий. Современное общество прогрессирует тем быстрее и заметнее, чем больше в нём доля интеллекта, создающего новое, и меньше — доля использования уже существующих находок.
Данный текст является ознакомительным фрагментом.