II

We use cookies. Read the Privacy and Cookie Policy

II

Добрых три четверти галактик имеют форму спирального диска с ядром, из которого выходят два рукава, как в нашем Млечном Пути. Галактическая туманность, состоящая из газово-пылевых облаков, а также из звезд (которые постепенно зарождаются в ней и гибнут), вращается, причем рукава вращаются с меньшей угловой скоростью, чем ядро, и, не поспевая за ним, скручиваются; как раз поэтому целое приобретает форму спирали. Но рукава перемещаются со скоростью, отличной от скорости звезд.

Тем, что галактика все же сохраняет форму спирали, она обязана волнам плотности, в которых звезды играют такую же роль, какую играют молекулы в обычном газе.

Вращаясь с неодинаковой скоростью, звезды, значительно удаленные от ядра, остаются за рукавом, зато вблизи ядра они догоняют спиральный рукав и пересекают его. Скорость, равную скорости рукавов, имеют лишь звезды, расположенные на полпути между ядром и периферией галактики, т.е. на так называемой коротационной окружности. Газовое облако, из которого должно было возникнуть Солнце с планетами, 5 миллиардов лет назад находилось у внутренней кромки спирального рукава. Оно догоняло рукав с небольшой скоростью – порядка 1 км/с. Оказавшись за фронтом волны плотности, газовое облако было «загрязнено» продуктами радиоактивного распада сверхновой звезды (изотопами иода и плутония). Эти изотопы распадались до тех пор, пока из них не возник новый элемент – ксенон. Между тем облако обжималось волной уплотнения, в которой оно оказалось; это стимулировало его конденсацию, пока не родилась наконец молодая звезда – Солнце. В конце этой фазы, примерно 4,5 миллиардов лет назад, поблизости вспыхнула другая сверхновая; она «загрязнила» околосолнечную туманность (ибо не весь протосолнечный газ успел сконденсироваться в Солнце) радиоактивным алюминием, что ускорило – а может быть, вызвало – формирование планет. Как показало математическое моделирование, для того чтобы газовая оболочка, вращающаяся вокруг молодой звезды, подверглась фрагментации и начала конденсироваться в планеты, необходимо «вмешательство извне» в виде мощного толчка; таким толчком стал удар от сверхновой, вспыхнувшей неподалеку от Солнца.

Откуда обо всем этом известно? Из состава радиоизотопов, содержащихся в метеоритах Солнечной системы; зная период полураспада этих изотопов (иода, плутония, алюминия), можно рассчитать, когда протосолнечная туманность была ими «загрязнена». Это произошло по меньшей мере дважды; различное время распада этих изотопов позволяет установить, что первое «загрязнение» в результате вспышки сверхновой произошло сразу после того, как протосолнечная туманность оказалась на внутренней кромке галактического рукава, а второе «загрязнение» (радиоактивным алюминием) – примерно 300 миллионов лет спустя.

Итак, самый ранний период своей жизни Солнце провело в зоне сильной радиации и резких ударов, стимулирующих планетогенез, а потом, с отвердевающими и застывающими уже планетами, вышло в сильно разреженное пространство, огражденное от звездных катастроф; поэтому жизнь на Земле могла развиваться без убийственных для нее помех.

Как следует из этой картины Вселенной, коперниканский принцип, согласно которому Земля вместе с Солнцем находится не в особо выделенном месте, а «где попало», оказывается под серьезным сомнением.

Если бы Солнце находилось на далекой периферии Галактики и, медленно двигаясь, не пересекало ее рукавов, оно, вероятно, не породило бы планет. Планетогенез требует «акушерской помощи» в виде бурных катаклизмов – мощных ударных волн от взрывающихся сверхновых или по крайней мере одного такого «близкого контакта».

Если бы Солнце, породив от таких ударов планеты, обращалось вблизи галактического ядра, а значит, гораздо быстрее, чем рукава спирали, то оно часто пересекало бы их. Тогда многочисленные лучевые и радиоактивные удары сделали бы невозможным возникновение жизни на Земле либо уничтожили ее на ранней стадии.

А если бы Солнце двигалось по самой коротационной окружности Галактики, не покидая ее рукава, жизнь также не смогла бы сохраниться на нашей планете: раньше или позже ее убила бы вспышка какой-нибудь близкой сверхновой. Внутри галактических рукавов сверхновые вспыхивают чаще, да и средние расстояния между звездами здесь гораздо меньше, чем между рукавами.

Следовательно, благоприятные для планетогенеза условия существуют внутри спиральных рукавов, тогда как условия, благоприятствующие зарождению и развитию жизни, – в пространстве между рукавами.

Таким условиям не удовлетворяют ни звезды, обращающиеся вблизи ядра Галактики, ни звезды ее периферии, ни, наконец, звезды, орбиты которых совпадают с коротационной окружностью, – но лишь такие, которые находятся в ее окрестностях.

Следует помнить еще, что слишком близкий взрыв сверхновой, вместо того чтобы «обжать» протосолнечное облако и тем самым ускорить конденсацию планет, развеял бы это облако целиком, как порыв ветра – пух одуванчика. Взрыв чересчур отдаленный мог бы оказаться недостаточным, чтобы стать импульсом для планетогенеза. А следовательно, взрывы сверхновых, соседствующих с Солнцем, должны были быть «как следует» синхронизированы с основными этапами его развития, точнее, его развития как звезды, как Солнечной системы и, наконец, как системы, в которой возникла жизнь.

Протосолнечное облако оказалось, как видим, тем игроком, который сел за рулетку с необходимым начальным капиталом, потом, выигрывая раз за разом, увеличил свой капитал и покинул казино в самую пору, не подвергая опасности проигрыша все то, что принесла ему «полоса удач». Похоже, что «биогенные» планеты, способные породить цивилизации, следует искать прежде всего вблизи коротационной окружности Галактики.

Если принять предложенную здесь реконструкцию истории нашей системы, то придется радикально пересмотреть прежние оценки плотности космических цивилизаций.

Мы знаем почти наверное, что ни одна из звезд в окрестностях Солнца – в радиусе примерно 50 световых лет – не является обиталищем цивилизаций, располагающих техникой сигнализирования, по меньшей мере не уступающей нашей.

Радиус коротационной окружности составляет около 10,5 тыс. парсеков, то есть около 34 000 световых лет. Во всей Галактике насчитывается свыше 150 миллиардов звезд. Если считать, что третья их часть находится в ядре и в широких основаниях спиральных рукавов, то на сами рукава приходится 100 миллиардов звезд. Неизвестно, насколько широк тор (фигура в виде автомобильной шины), который следует описать вокруг коротационной окружности, чтобы охватить всю зону, благоприятствующую возникновению «жизнеродящих» планет. Так что будем считать, что этот «биогенный тор» содержит в себе одну стотысячную часть всех звезд галактической спирали – то есть миллион. Периметр коротационной окружности составляет около 215 000 световых лет. Если бы каждая из находящихся там звезд освещала хотя бы одну цивилизацию, то среднее расстояние между ближайшими обитаемыми планетами составляло бы пять световых лет. Это, однако, невозможно, потому что звезды на коротационной окружности расположены неравномерно; при этом звезды с рождающимися планетами следует искать скорее внутри спиральных рукавов, а звезды, в планетном семействе которых имеется хотя бы одна планета, на которой эволюция жизни протекает без гибельных помех, – в пространстве между рукавами, в условиях долговременной изоляции от звездных катастроф. Между тем звезд больше всего внутри рукавов, так как здесь их плотность максимальна.

Таким образом, сигналы «внеземного разума» следовало бы искать на коротационной дуге перед Солнцем и за Солнцем в галактической плоскости, то есть между звездными туманностями Персея и Стрельца: именно здесь могли бы находиться звезды, которые, подобно нашему Солнцу, уже прошли через галактический рукав, а теперь вместе с нашей системой движутся в пространстве между рукавами.

Но дальнейший анализ показывает, что простые статистические умозаключения, к которым мы прибегли, немногого стоят.

Вернемся еще раз к реконструкции истории Солнца и его планет. Там, где коротационная окружность пересекает спиральные рукава, их толщина составляет около 300 парсеков. Протосолнечное газовое облако, двигаясь по орбите, наклоненной под углом 7—8 градусов к плоскости Галактики, впервые вошло в ее рукав около 4—9 миллиардов лет назад. На протяжении 300 миллионов лет это облако, проходя через всю толщину рукава, подвергалось бурным воздействиям, а с тех пор, как вышло из него, странствует в спокойной пустоте. Это странствие продолжается дольше, чем прохождение через рукав, поскольку коротационная окружность, вблизи которой движется Солнце, пересекает спиральные рукава под острым углом, в результате чего дуга солнечной орбиты между рукавами длиннее, чем дуга внутри рукава.

Эволюция газово-пылевого протосолнечного облака в спиральной структуре Галактики, обусловленной волнами плотности. Орбита облака пересекает спиральный рукав только один раз. При вхождении в волну сжатия (показана пунктиром) облако может подвергнуться воздействию вспыхнувшей рядом сверхновой. В процессе движения внутри рукава, в течение приблизительно 300 миллионов лет, облако эволюционирует. Выйдя из рукава, оно движется в галактическом пространстве между спиральными рукавами 4,6 миллиардов лет; при этом спиральная структура не оказывает влияния на эволюцию облака, приводящую к возникновению Солнечной системы.

На рисунке, согласно Л.С. Марочнику («Природа», 1982, № 6), изображена наша Галактика, радиус коротационной окружности, а также орбита, по которой Солнечная система обращается вокруг центра Галактики. Скорость, с которой Солнце вместе с планетами движется относительно спиральных рукавов, остается предметом споров. Судя по рисунку, наша система уже прошла через оба рукава. Если так было в действительности, то первое прохождение она совершила, будучи еще газово-пылевым облаком, которое по-настоящему стало конденсироваться лишь при пересечении второго спирального рукава.

Вопрос о том, имеем ли мы за собой один переход или два, в данном случае несущественен: он касается возраста протозвездного облака, то есть того, когда оно начало формироваться, а не того, когда оно стало подвергаться фрагментации, вступив тем самым в стадию астрогенеза. Подобным образом звезды возникают и сегодня. Изолированное облако не может сконденсироваться в звезду под влиянием гравитации: сохраняя (согласно законам динамики) вращательный момент, оно обращалось бы вокруг своей оси тем быстрее, чем меньше ее радиус, и в конце концов возникла бы звезда, обращающаяся на экваторе со скоростью, превышающей скорость света, что невозможно. Центробежные силы разорвут ее гораздо раньше. Поэтому звезды возникают скоплениями, из отдельных фрагментов протозвездного облака, в ходе процессов сначала медленных, а потом все более бурных. Рассеиваясь в ходе конденсации, фрагменты облака отбирают у молодых звезд часть их вращательного момента. Если показателем «производительности астрогенеза» считать отношение между первоначальной массой облака и совокупной массой образовавшихся из нее звезд, то производительность эта окажется невелика. Галактика – «производитель», который крайне расточительно обращается с первоначальным капиталом материи. Но рассеянные части протозвездных облаков через какое-то время снова начинают конденсироваться под влиянием гравитации, и процесс повторяется.

Когда начинается звездогенный коллапс, различные фрагменты облака ведут себя неодинаково. Центр облака плотнее периферии, поэтому массы протозвездных фрагментов различны. Они составляют от 2 до 4 солнечных масс в центральной части облака и от 10 до 20 – на периферии. Из внутренних конденсатов возникают малые звезды; они долговечны, а их светимость почти не меняется в течение миллиардов лет. К ним принадлежит Солнце. А большие периферийные звезды могут становиться сверхновыми, которые, после короткой по астрономическим меркам жизни, взрываются мощными вспышками.

О том, как начало конденсироваться облако, из которого возникли и мы, ничего не известно; воссоздать можно лишь судьбу той его небольшой части, где возникло Солнце с планетами. Когда этот процесс начался, вспыхивающие поблизости сверхновые «загрязнили» протосолнечное облако своим радиоактивным излучением. Такое «загрязнение» имело место по меньшей мере дважды. В первый раз протосолнечное облако подверглось «загрязнению» изотопами иода и плутония – вероятно, вблизи внутренней кромки спирального рукава; а во второй раз, через 300 000 000 лет, уже в глубине спирали, другая сверхновая бомбардировала облако радиоактивными изотопами алюминия.

По времени, через которое эти изотопы, распадаясь, превращаются в другие элементы, можно примерно установить, когда произошли оба эти «загрязнения». Краткоживущие изотопы иода и плутония в конце концов образовали стабильный изотоп ксенона, а радиоактивный изотоп алюминия превратился в магний. Этот ксенон и магний обнаружен только в метеоритах нашей системы. Сопоставляя эти данные с возрастом земной коры (установленному по времени распада содержащихся в ней долгоживущих изотопов урана и тория), можно в приближении реконструировать различные «сценарии» солнечной космогонии.

Рисунок соответствует сценарию, согласно которому газовое облако в первый раз прошло через спиральный рукав 10,5 миллиардов лет назад. Его плотность была тогда ниже критической, поэтому фрагментация не началась. Это случилось лишь после вхождения в следующий спиральный рукав, 4,6 миллиардов лет назад. Условия на периферии фрагментов благоприятствовали возникновению сверхновых, а в центре – рождению менее ярких звезд типа Солнца. Под влиянием сжатия и взрывов сверхновых протосолнечное облако превратилось в молодое Солнце вместе с планетами, кометами и метеоритами. Этот космогонический сценарий не свободен от упрощений. Фрагментация газовых облаков происходит случайным образом; через огромные пространства рукавов движутся ударные фронты, вызванные различными катаклизмами; возникновению подобных фронтов могут способствовать взрывы сверхновых.

Галактики по-прежнему рождают звезды, ведь Космос, в котором мы обитаем, хотя и немолод, еще не успел состариться. Моделирование событий наиболее отдаленного прошлого показывает, что в конце концов весь протозвездный материал будет исчерпан, звезды погаснут и целые галактики «испарятся» в результате электромагнитного и корпускулярного излучения.

От этой «термодинамической смерти» нас отделяет примерно 10100 лет. Гораздо раньше – примерно через 1015 лет – все звезды утратят свои планеты из-за близкого прохождения других звезд. Все планеты, будь то мертвые или обладающие жизнью, будут выбиты со своих орбит сильными возмущениями и утонут в безбрежном мраке и холоде, близком к абсолютному нулю. Это выглядит парадоксом, но легче предсказывать, что будет со Вселенной через 1015 или 10100 лет или что происходило в первые минуты ее существования, чем точно реконструировать все этапы истории Солнца и Земли. Еще труднее предсказать, что случится с нашей системой, когда она покинет спокойный промежуток между звездными облаками обоих галактических рукавов – Персея и Стрельца. Если считать, что разница между скоростью Солнца и спирали составляет 1 км/сек, то в следующий раз мы попадем в глубь спирали примерно через 500 000 000 лет.

Занимаясь космогоническими проблемами, астрофизика напоминает следствие по делу, в котором все улики лишь косвенные. Все, что можно собрать, – это некоторое число «следов и вещественных доказательств»; а из них, как из рассыпанной головоломки (многие части которой к тому же утеряны), надо сложить непротиворечивое целое. Хуже того: оказывается, что из сохранившихся фрагментов можно составить ряд неодинаковых узоров. Так, в интересующем нас случае не все данные можно выразить в точных цифрах (например, разницу между скоростью обращения Солнца и галактической спирали). Кроме того, сами рукава спирали не столь резко очерчены и не переходят в пространство между ними так отчетливо и ясно, как на нашем рисунке. И наконец, все спиральные туманности схожи друг с другом не больше, чем люди различного роста, сложения, возраста, расы, пола и так далее.

И все же то, что удается узнать о космогоническом сотворении Млечного Пути, все больше приближается к действительности. Звезды родятся главным образом внутри спиральных рукавов; сверхновые вспыхивают тоже чаще всего внутри этих рукавов; Солнце наверняка находится вблизи коротационной окружности, то есть не «где попало» в Галактике, поскольку (как мы уже говорили) в коротационной зоне существуют условия, отличные от тех, что имеют место как вблизи ядра, так и на периферии спирального диска. Благодаря компьютерному моделированию астрофизики могут за короткое время воспроизводить множество пробных вариантов астро– и планетогенеза, что еще не так давно требовало необычайно сложных и длительных вычислений. Вместе с тем наблюдательная астрофизика доставляет все новые и все более точные данные для такого моделирования. Но процесс, основанный на косвенных уликах, продолжается; вещественные доказательства и математические предположения, указывающие на Виновников случившегося, могут уже считаться хорошо обоснованной гипотезой, а не безосновательными догадками. Акт обвинения Спиральных Галактик в том, что они Родительницы и Детоубийцы одновременно, уже поступил в трибунал астрономии; процесс продолжается, но окончательный приговор еще не вынесен.