Трава и деревья

Трава и деревья

Начну эту главу с того, что подытожу и повторю рассуждения, уже изложенные ранее. Шкалирование неопределенности, основанное на кривой нормального распределения, не учитывает возможности (и соответственно влияния) резких скачков или разрывов, а потому неприменимо в Крайнестане. Пользоваться им — все равно что рассматривать траву, вглядываясь в мелкие стебельки и не замечая (огромных!) деревьев. Непредсказуемые большие отклонения, конечно, редки, но на них нельзя закрывать глаза, поскольку их кумулятивный эффект огромен.

Традиционное гауссово исследование мира начинается с фокусирования на обычном, и лишь потом, как нечто побочное, рассматриваются исключения или так называемые «выбросы». Но есть и другой подход, который за основу берет исключительное, а второстепенным считает обычное.

Я не раз уже подчеркивал, что есть случайности двух видов, качественно различные, как воздух и вода. Одна не зависит от крайностей; другая, наоборот, находится под их сильным воздействием. Одна не порождает Черных лебедей; другая порождает. Недопустимо использовать для газа те же характеристики, что и для жидкости. И если бы это было допустимо, такой подход не назывался бы «приближением». Газ не «приближается» к жидкости.

Можно с толком использовать гауссов метод для упорядочения тех величин, которые по объективным причинам не слишком сильно удаляются от средних значений. Если переменные находятся в зоне действия закона гравитации или имеются физические ограничения, препятствующие чрезмерной дифференциации размеров, значит, мы попали в Среднестан. Если сила равновесия настолько велика, что малейшая разбалансировка мгновенно ликвидируется, то опять-таки гауссов метод вполне приемлем. В противном случае грош ему цена. Вот почему экономика в общем-то зиждется на понятии равновесия: оно помимо всего прочего устраивает экономистов тем, что позволяет втискивать экономические явления в гауссовы рамки.

Заметьте, я не утверждаю, что среднестанский тип случайности не допускает никаких крайностей. Но они настолько редки, что в конечном итоге роль их очень невелика. Эффект таких крайностей ничтожно мал и уменьшается с увеличением общей совокупности.

Теперь немного конкретики: если у вас имеется набор великанов и карликов, а иначе говоря, наблюдения, различающиеся на несколько порядков величины, вы можете все-таки оставаться на территории Среднестана. Почему? Сейчас выясним. Предположим, что у вас есть выборка в тысячу человек, с широким диапазоном от карлика до великана. Скорее всего, в этой выборке встретится много великанов, а не только какой-то один, случайный. Неожиданно возникший лишний великан не изменит среднего показателя, потому что заранее предполагается, что великанов несколько и ваш средний показатель, скорее всего, и так достаточно высок. Другими словами, наибольший экземпляр не может сильно возвышаться над средним. Средний показатель всегда учитывает наличие как великанов, так и карликов, поэтому никто из них не попадет в разряд редкостных исключений — если только не народится вдруг какой-нибудь уникальный мегавеликан или микрокарлик. Это будет Среднестан с большой амплитудой разброса.

Снова отметим следующую закономерность: чем реже событие, тем менее точно мы можем оценить степень его вероятности — даже в рамках гауссианы.

Позвольте вам продемонстрировать, как «гауссова кривая» вытесняет из жизни случайность — потому она так и популярна. Мы любим ее за то, что она дает определенность! Каким образом? За счет усреднения, о чем сейчас и пойдет разговор.

Данный текст является ознакомительным фрагментом.