7 Феномен переменных токов очень высокой частоты
7
Феномен переменных токов очень высокой частоты
Журналы по вопросам электричества становятся всё более интересными. Делаются обзоры явлений, и ежедневно возникают новые проблемы, заслуживающие внимания инженеров. За последнее время в нескольких английских журналах, главным образом в «Electrician», были подняты темы, привлекшие к себе повышенное внимание. Выступление профессора Уильяма Крукса оживило интерес к его превосходным и умело проведенным экспериментам; эффект, наблюдаемый в электрических сетях Ферранти, побудил выразить своё мнение нескольких ведущих английских специалистов-электротехников; г-н Суинберн обнародовал ряд интересных идей по поводу использования конденсаторов в цепи возбуждения динамо-машин.
Собственные познания пишущего эти строки убедили его рискнуть высказаться относительно этих и других вопросов в надежде, что они позволят читателю получить некоторую полезную информацию или совет.
Среди многих своих экспериментов профессор Крукс останавливается на тех, которые он провел с трубками без электродов, и его описания приводят к заключению, что результаты, полученные с помощью таких трубок, довольно необычны. Если это так, то автору приходится сожалеть, что профессор Крукс, чья замечательная работа вызывает восхищение многих исследователей, не воспользовался в опытах должным образом сконструированной машиной переменного тока, именно такой, которая способна давать, скажем, от 10 000 до 20 000 колебаний тока в секунду. Тогда его исследования этого трудного, но захватывающе интересного предмета были бы еще более полными. Действительно, при работе такой машины, соединенной с индукционной катушкой, утрачивается различие в свойствах электродов — желательное, если не обязательное во многих экспериментах, поскольку во многих случаях оба электрода ведут себя одинаково; а с другой стороны, это дает преимущество в возможности сколь угодно усиливать эффект. Использование вращающегося переключателя, или коллектора, приводит к ограничению тока в первичной обмотке. При увеличении скорости коллектора ток первичной обмотки уменьшается; если ток увеличить, то искрение, которое невозможно полностью преодолеть с помощью конденсатора, портит устройство. Таких ограничений нет в машине переменного тока, так как в первичной обмотке можно получать любую желаемую скорость изменений тока. Таким образом, при сравнительно малом токе в первичной обмотке возможно получение исключительно высокой электродвижущей силы во вторичной обмотке; более того, можно быть совершенно уверенным в безупречной работе устройства.
Пользуясь случаем, хотел бы, не вдаваясь в детали, сказать, что всякий, кто попытается построить такую машину в первый раз, непременно будет рассказывать повести, полные печали и скорби. Сначала он, само собой разумеется, приступит к изготовлению якоря с необходимым количеством полюсов. Затем он получит удовлетворение от создания машины, способной сопровождать своей работой оперу Вагнера от начала до конца. Она, возможно, будет обладать способностью почти идеальным способом превращать механическую энергию в тепловую. Если будет возможность перемены полярности полюсов, он будет получать теплоту непосредственно от машины; если перемены нет, нагрев будет меньше, однако желаемый эффект не будет достигнут. Затем он откажется от железа в якоре и будет метаться между Сциллой и Харибдой. Он будет искать одну помеху и находить другую, однако после нескольких тяжких испытаний, возможно, получит приблизительно то, что хотел.
Из многих экспериментов, которые можно проводить с такой машиной, весьма интересны опыты с индукционной катушкой, находящейся под высоким напряжением. Совершенно меняется характер разряда. Дуга имеет гораздо большую протяженность, и на нее с такой легкостью воздействует малейший поток воздуха, что она извивается самым причудливым образом. При этом она обычно издает ритмичный звук, свойственный исключительно дугам переменного тока, но есть любопытная особенность, состоящая в том, что можно услышать звук с частотой, намного превышающей десять тысяч колебаний в секунду, что многими считается почти пределом слухового восприятия. Во многих отношениях катушка ведет себя подобно электростатической машине. Контактный прерыватель значительно уменьшает искровой промежуток, электричество истекает свободно, а от провода, присоединенного к одной из клемм, исходят легкие потоки света, как если бы он был присоединен к полюсу мощной машины Теплера. Все эти явления возникают, конечно, в основном по причине достижения огромной разности потенциалов. Вследствие самоиндукции катушки, а также высокой частоты ток очень незначителен, в то же время происходит соответствующее увеличение напряжения. Электрический импульс той или иной силы, возникший в такой катушке, длится не менее четырех десятитысячных секунды. Так как это время превышает половину периода колебаний, возникает мысль, что во время прохождения тока появляется противодействующая электродвижущая сила. Вследствие этого возрастает напряжение, как это происходит в наполненной жидкостью трубке, которая быстро колеблется вокруг своей оси. Ток настолько мал, что, по мнению и невольному опыту автора, разряд даже очень большой катушки не может оказать опасного воздействия, в то время как пропущенный через ту же катушку ток более низкой частоты, даже если электродвижущая сила была бы гораздо меньшей, вызывает разряд, который будет очень опасен. Этот результат, однако, лишь отчасти обусловлен высокой частотой. Эксперименты, проведенные автором, доказывают, что чем выше частота, тем большее количество электрической энергии может пройти сквозь тело, не причинив больших неприятностей; следовательно, представляется достоверным, что ткани человеческого тела действуют как конденсаторы.
Вы не вполне подготовлены к работе с катушкой, соединенной с лейденской банкой. Вы, конечно, представляете, что из-за высокой частоты емкость банки должна быть небольшой. Следовательно, вы берете очень маленькую банку, размером примерно с небольшой винный бокал, но обнаруживаете, что даже с такой банкой катушка практически замкнута накоротко. Затем вы уменьшаете емкость до тех пор, пока не остановитесь на емкости, равной примерно двум сферам, скажем, десяти сантиметрам в диаметре и отстоящим на два-четыре сантиметра одна от другой. Тогда разряд принимает форму зубчатой ленты, в точности такой, как серия искр, наблюдаемая в быстро вращающемся зеркале; зубцы, конечно, соответствуют разрядам конденсатора. В этом случае вы можете наблюдать странное явление. Разряд начинается на ближайших выступах, постепенно нарастает, в некоторых местах ближе к вершинам сфер он прерывается, опять начинается снизу и так далее. Это происходит так быстро, что видны сразу несколько зазубренных лент. Это может озадачить вас на несколько минут, но объясняется достаточно просто. Разряд начинается и увлекает дугу вверх, пока она не прервется, возникая вновь на ближайших выступах и т. д. Поскольку ток свободно проходит сквозь конденсатор малой емкости, будет считаться вполне естественным, что присоединение лишь одной клеммы к телу такого же размера, при этом его изоляция не имеет значения, значительно уменьшает пробойное расстояние дуги.
Эксперименты с трубками Гейслера представляют особый интерес. Трубка без каких-либо электродов, из которой откачан воздух, будет светиться, находясь на некотором расстоянии от катушки. Если вакуумную трубку поместить рядом с катушкой, вся трубка засияет ярким светом. Лампа накаливания, поднесенная к катушке, засветится и ощутимо нагреется. Если одну из клемм лампы присоединить к клемме катушки и приблизить руку к колбе, то между стеклом и рукой произойдет очень необычный и весьма неприятный разряд, и нить накаливания может раскалиться добела. Разряд до некоторой степени похож на поток, исходящий из пластин силовой установки Теплера, но имеет несравнимо б?льшую величину. Лампа в этом случае действует как конденсатор, в котором разреженный газ образует одну обкладку, а рука оператора — другую. Если взять лампу в руку и приблизить ее к проводу, соединенному с катушкой, или коснуться его металлическими клеммами, электрод начнет ярко светиться, а стекло быстро нагреется. Работая со 100-вольтной лампой в 10 свечей, вы сможете, не испытывая больших неудобств, выдерживать ток такой величины, которая заставит лампу достаточно ярко светиться; но держать ее в руке можно только несколько минут, так как стекло нагревается за невероятно короткое время. Когда трубка, помещенная вблизи катушки, светится, можно добиться прекращения свечения, поставив металлическую пластину между катушкой и трубкой, но если металлическую пластину прикрепить к стеклянному стержню или изолировать другим способом, трубка может продолжать светиться, несмотря на вклинившуюся пластину, или яркость ее свечения может даже возрасти. Эффект зависит от положения пластины и трубки относительно катушки, и его всегда можно предсказать, допустив, что существует проводимость от одной клеммы катушки к другой. В зависимости от положения пластины она может или отводить ток от трубки или направлять его к ней.
В другом направлении исследований автор часто проводил опыты, поддерживая свечение в 50- или 100-вольтных лампах накаливания с любой требуемой силой света, присоединив обе клеммы каждой лампы к толстому медному проводу в несколько футов длиной. Эти эксперименты представляются достаточно интересными, но они являются таковыми не более, чем эксцентричный опыт Фарадея, который не забыт и часто проводится современными исследователями, и в котором получаемый разряд возникает между двумя концами согнутого медного провода. Будет уместно сослаться на эксперимент, который представляется столь же интересным. Если трубку Гейслера, клеммы которой соединены медным проводом, поместить рядом с катушкой, никто, конечно, не будет готов увидеть свечение трубки. Достаточно любопытно, что она всё-таки светится и, что еще более любопытно, провод, как кажется, не играет при этом большой роли. Хотя в первый момент вы склоняетесь к мысли, что это явление как-то связано с полным сопротивлением провода. Но эта идея, конечно, немедленно отвергается, так как для этого потребовалась бы огромная частота. Эффект, однако, вызывает недоумение только поначалу, потому что по размышлении становится совершенно ясно, что провод может играть лишь незначительную роль. Этому можно найти несколько объяснений, но, возможно, наиболее подходящим будет вывод, допускающий, что электрический ток от клемм катушки проходит через пространство. В соответствии с этим предположением — и пусть трубка с проводом находится в любом положении — провод забирает на себя часть тока, проходящего сквозь пространство, в котором находятся провод и металлические клеммы трубки; сквозь примыкающее пространство ток проходит практически без помех. Поэтому, если трубка перпендикулярна линии, соединяющей клеммы катушки, провод едва ли играет какую-либо роль, но, располагаясь более или менее параллельно этой линии, провод до определенной степени снижает яркость свечения трубки и ее способность светиться. Основываясь на этом предположении, можно объяснить многие другие явления. Например, если на концы трубки поставить пластинки в форме шайб достаточного размера и удерживать ее на линии, соединяющей клеммы катушки, она не будет светиться, и тогда почти весь ток, вместо того чтобы проходить сквозь пространство между пластинками, пойдет в обратном направлении по проводу. Но если наклон трубки относительно линии будет достаточным, она будет светиться, несмотря на наличие пластин. То же, если металлическую пластину укрепить на стеклянном стержне и удерживать под прямым углом к линии, соединяющей клеммы, сместив ее ближе к одной из них: трубка, расположенная более или менее параллельно с линией, тотчас же засветится, как только одна из клемм коснется платы, и погаснет, если клемма не касается ее. Чем больше поверхность пластины, до определенного предела, тем легче возникает свечение трубки. Когда трубка помещена под прямым углом к прямой, соединяющей клеммы, и затем поворачивается, ее свечение неуклонно возрастает, пока она не станет параллельной этой линии. Автор обязан, однако, заявить, что он придает идее утечки тока через пространство не больше значения, чем это необходимо для объяснения, потому что убежден в том, что все эти эксперименты не могли бы быть проведены с машиной постоянного тока, дающей постоянную разность потенциалов, а также в том, что к этому явлению имеет отношение действие конденсатора.
Целесообразно принять определенные меры предосторожности, используя катушку Румкорфа с переменными токами очень больших частот. Первичный ток не должен быть включенным слишком долго, иначе сердечник так сильно нагреется, что может расплавиться гуттаперча или парафин либо сгорит изоляция, и это может произойти в течение очень короткого времени, учитывая силу тока. Без большого риска первичный ток можно подать через тонкие провода; при этом полное сопротивление так велико, что будет трудно заставить ток достаточно большой силы пройти по тонкому проводу, чтобы не повредить его, и действительно, катушка может быть в целом намного безопаснее, когда выводы тонкого провода соединены, чем когда они изолированы; но особого внимания заслуживает момент, когда выводы присоединены к обкладкам лейденской банки, поскольку в какой-то момент при емкости, близкой к критической, которая противодействует самоиндукции, при существующей частоте катушка может испытать судьбу Св. Поликарпа. Если дорогой вакуумный насос начинает светиться вблизи катушки или касается одного из его проводов, ток можно оставлять включенным всего на несколько мгновений, иначе стекло лопнет от нагрева разреженного газа в одном из узких проходов, как в собственных опытах автора, — quod erat demonstrandum[5].
Есть еще достаточно большое количество других интересных вопросов, которые могут быть рассмотрены в связи с такой машиной. Эксперименты с телефоном, с проводником в сильном поле, конденсатором или дугой всё же позволяют сделать определенный вывод о том, что звуки, намного превышающие общепринятый предел слышимости, могут быть восприняты. Телефон будет издавать звуки частотой от двенадцати до тринадцати тысяч вибраций в секунду; затем начинает сказываться неспособность сердечника успевать за такой частотой колебаний. Однако если магнит и сердечник заменить конденсатором, а клеммы присоединить к вторичной обмотке трансформатора с высоким напряжением, можно услышать более высокие звуки. Если ток направить вокруг сердечника из тонких пластин и осторожно приложить небольшую пластину тонкого листового железа к сердечнику, можно услышать еще более высокий звук — от тринадцати до четырнадцати тысяч колебаний в секунду, при условии, что ток достаточно сильный. Маленькая катушка, однако, плотно зажатая между полюсами магнита, будет издавать звук с указанным выше числом колебаний, а излучение дуги находиться на более высокой частоте. Предел слышимости оценивается по-разному. В трудах сэра Уильяма Томсона заявляется десять тысяч колебаний в секунду или около того, и это является пределом. Другие, но менее надежные источники считают его равным более чем двадцати четырем тысячам. Описанные выше эксперименты убедили автора — звуки с несравнимо б?льшим числом вибраций в секунду будут восприниматься при условии, что они смогут прозвучать с достаточной силой. Нет оснований сомневаться: именно так всё и будет. Сжатия и разрежения воздуха неизбежно вызовут соответствующую вибрацию барабанной перепонки. В результате ухо испытает некое новое ощущение. Какой бы ни была — в определенных пределах — скорость передачи к нервным центрам, всё же есть вероятность, что из-за недостаточного опыта ухо не будет способно различить ни одного столь высокого звука. С глазом совсем другое дело: если зрительное ощущение основано на эффекте резонанса, как многие считают, никакое значительное увеличение интенсивности колебаний эфира не сможет расширить наш зрительный диапазон с обеих сторон от спектра видимости.
Предел излучаемых звуковых волн дуги зависит от ее размера. Чем больше поверхность, создаваемая тепловым эффектом в дуге, тем выше звук. Самые высокие звуки исходят от разрядов высокого напряжения индукционной катушки, когда в дуге действует, так сказать, вся поверхность. Если R — сопротивление дуги, С — ток и линейные размеры дуги возрастут в n раз, тогда сопротивление составит R/n, и при той же плотности ток будет составлять п2С, следовательно, тепловой эффект увеличится в n3, в то время как поверхность возрастет только в п2. По этой причине очень большие дуги не будут издавать какого-либо ритмичного звука даже с очень низкой частотой. Однако следует отметить, что издаваемый звук зависит также до некоторой степени от состава угольного электрода.
Если электрод содержит тугоплавкий материал, он при нагреве имеет свойство сохранять температуру дуги, следовательно, звук уменьшится; по этой причине представляется необходимым применение таких электродов для дуги переменного тока.
С токами высокой частоты можно получать бесшумные дуги, но регулирование лампы представляется чрезвычайно трудным делом при слишком слабом внимании или пренебрежении к положению проводников, передающих эти токи.
Интересной особенностью дуги, полученной от высокочастотных переменных токов, является ее устойчивость. Этому есть две причины, одна из которых присутствует всегда, вторая — только иногда. Первая обусловлена характером тока, а вторая — свойством машины. Первая причина более важна и обязана непосредственно частоте колебаний. Когда дуга формируется от тока, образующего волну через определенные промежутки времени, происходит соответствующее волнообразное изменение температуры газового столба и, как следствие, соответствующее волнообразное изменение сопротивления дуги. Но сопротивление дуги в огромной степени зависит от температуры газового столба, практически равно бесконечности, когда газ между электродами холодный. Поэтому стойкость дуги зависит от возможности сохранения температуры газового столба. По этой причине невозможно сохранять дугу с помощью тока малой частоты. С другой стороны, с практически постоянным током дуга легко удерживается, при этом в столбе постоянно поддерживаются высокая температура и низкое сопротивление. Чем выше частота, тем меньше времени для остывания дуги и значительно больше ее устойчивость. При частоте 10 000 и более колебаний в секунду сверхмалые колебания температуры в дуге накладываются на постоянную температуру, подобно зыби на поверхности глубокого моря. Тепловой режим практически постоянный, и дуга ведет себя так, как будто она создана постоянным током, за исключением, однако, того, что она может возникнуть не так быстро, а расход электродов будет одинаковым, тем не менее автор отмечал некоторые отклонения от нормы в этом отношении.
Вторая упомянутая причина, которая, возможно, не видна, обусловлена тенденцией машины такой высокой частоты сохранять ток практически постоянной величины. Когда дуга удлиняется, соответственно возрастает электродвижущая сила, и дуга оказывается более устойчивой.
Такая машина замечательным образом приспособлена для работы с током постоянной величины, но совсем не пригодна для напряжения постоянной величины. Действительно, в определенных типах таких машин почти неизбежно получается ток постоянной величины. Когда количество полюсов или полюсных выступов значительно возрастает, большое значение приобретает изоляционный промежуток между ними. Это равноценно тому, когда вы имеете дело с большим числом маломощных машин. Кроме того, полное сопротивление в якоре чрезвычайно возрастает под воздействием высокой частоты, одновременно возрастают и магнитные потери. Если используется триста или четыреста чередующихся полюсов, утечка так велика, что это в сущности уподобляется соединению полюсов в двухполюсной машине с помощью куска железа. Правда, эту помеху можно в некоторой степени устранить, используя поле одной полярности, но тогда сталкиваешься с трудностями иного характера. Все эти явления имеют тенденцию к поддержанию тока постоянной величины в цепи якоря.
В этом отношении интересно отметить, что даже сегодня инженеры изумляются способностью машины поддерживать постоянную величину тока, подобно тому как они несколько лет назад считали чрезвычайным ее достижением удерживать постоянную разность потенциалов на клеммах. Кроме того, первое достигается так же легко, как и второе. Следует только помнить, что в индуктивной машине любого вида, если требуется постоянное напряжение, индуктивная связь между первичным, или возбуждающим контуром, и вторичным, или контуром якоря, должна быть как можно более сильной, тогда как в машинах для постоянного тока требуется как раз обратное. Противодействие протеканию индуцированного тока должно быть по возможности малым в первом случае и наибольшим во втором. Но противодействие проходящему току может быть обусловлено не единственной причиной. Оно может быть вызвано омическим сопротивлением самоиндукции. Активное сопротивление динамо-машины, или трансформатора, может иметь такую величину, что при работе с устройствами сравнительно небольшого сопротивления в очень широких пределах можно поддерживать ток почти постоянной величины. Но такое высокое сопротивление сопровождается большой потерей энергии, значит, это непрактично. Другое дело самоиндукция. Самоиндукция не означает потерю энергии. Принцип таков: применяй самоиндукцию вместо сопротивления. Есть обстоятельство, которое благоприятствует принятию этого проекта, суть которого состоит в том, что очень высокая самоиндукция может быть получена дешевым способом, если сравнительно небольшой длины провод более или менее плотно окружить железом; к тому же эффект можно усиливать по желанию, вызывая быстрое волнообразное изменение тока. Итак, необходимые условия для тока постоянной величины сводятся к следующему: слабое магнитное взаимодействие между индуцированным и индуцирующим контурами, максимально высокая самоиндукция с минимальным сопротивлением, самая большая достижимая частота изменения тока. Для постоянного напряжения с другой стороны требуется самое сильное магнитное взаимодействие между контурами, стабильного индуцирующего потока и, по возможности, отсутствие реакции. Если последние условия могут быть полностью выполнены в машине с постоянным напряжением, ее мощность многократно превзойдет мощность машины, первоначально предназначенной для выработки постоянного тока. К сожалению, тип машины, в которой эти условия могут быть соблюдены, не дает возможности получения большой электродвижущей силы, и, кроме того, существуют трудности в снятии тока.
Благодаря своей проницательной изобретательской интуиции нынешние энтузиасты дугового освещения быстро поняли недостатки машин с постоянной величиной тока. Их машины для дугового освещения имеют слабые поля, и достаточно большие якоря с медным проводом огромной длины и небольшим количеством сегментов коллектора и изменение этих параметров не позволят увеличить силу тока и необходимую самоиндукцию. Такие машины могут поддерживать практически постоянную амплитуду тока при значительном колебании сопротивления в контуре. Их мощность соответственно уменьшается, поэтому с целью сокращения значительных потерь мощности они используют простое устройство, компенсирующее исключительно сильные изменения тока. Волнообразный характер тока — едва ли не самое важное качество эффективности системы дугового освещения. Он представляет собой стабилизирующий элемент, заменяет большое омическое сопротивление без больших потерь мощности и, что еще более важно, позволяет использовать простые надежные лампы, наиболее подходящие для ламп данного вида, которые, работая от тока с определенным количеством импульсов в секунду, будут, при правильной эксплуатации, регулироваться даже лучше. Это открытие было сделано автором с опозданием на несколько лет.
Компетентные английские электротехники утверждают, что в машине с постоянной силой тока или трансформаторе регулирование достигается путем изменения фазы тока во вторичной обмотке. Ошибочность этой точки зрения может быть легко доказана, если применить устройства, которые обладают самоиндукцией и электрической емкостью или самоиндукцией и сопротивлением, то есть запаздывающий и опережающий элементы в таком соотношении не оказывают существенного влияния на фазу вторичного тока. Можно подключать или отключать любое количество таких устройств и тем самым продемонстрировать, что стабилизация тока осуществляется, в то время как электродвижущая сила меняется в зависимости от их количества. Изменение фазы вторичного тока есть просто результат, вытекающий из изменений сопротивления, и хотя вторичная реакция имеет определенное значение, всё же настоящая причина управления лежит в наличии перечисленных выше обстоятельств. Следует, однако, указать, что вышеупомянутые замечания относятся к машине с независимым возбуждением.
Если возбуждение происходит путем коммутирования тока якоря, то фиксированное положение щеток придает любому сдвигу средней линии важнейшее значение. Пусть не покажется нескромным со стороны автора упоминание того факта, что, насколько можно судить по записям, он является первым, кто успешно управлял машиной, установив перемычку, соединяющую внешний контур и коллектор посредством третьей щетки. Если якорь и поле должным образом соразмерены, а щетки находятся в расчетном положении, то стабильный ток или напряжение являются следствием сдвига диаметра коммутации при варьировании нагрузок.
В связи с тем что машины вырабатывают ток таких высоких частот, конденсатор позволяет проводить особенно интересные исследования. Не составляет труда поднять электродвижущую силу такой машины в четыре-пять раз путем простого присоединения конденсатора к цепи, и автор постоянно использовал конденсатор для управления, как предложил Блейксли в своей книге о переменных токах, в которой он с изящной простотой и четкостью рассмотрел наиболее часто встречающиеся проблемы с конденсаторами. Высокая частота позволяет использовать небольшие емкости и облегчает исследование. Но несмотря на то, что в большинстве экспериментов результат может быть предсказан, многие явления поначалу кажутся странными. В качестве иллюстрации может послужить один опыт, проведенный три или четыре месяца тому назад с такой машиной и конденсатором. Была применена машина, дающая 20 000 колебаний в секунду. Концы двух неизолированных проводов длиной около двадцати футов, диаметром два миллиметра, расположенные очень близко один к другому, были присоединены к клеммам машины и к конденсатору. Небольшой трансформатор, конечно, без железного сердечника, использовался для снятия показаний в пределах шкалы вольтметра Кардью путем присоединения вольтметра к вторичной обмотке. На клеммах конденсатора электродвижущая сила составляла около 120 вольт, и она постепенно, дюйм за дюймом, уменьшалась, пока на клеммах генератора не осталось около 65 вольт. Фактически это выглядело так, как если бы конденсатор был генератором, а провод и якорная цепь — просто сопротивлением, присоединенным к нему. Автор надеялся на резонанс, но ему не удалось усилить эффект путем очень тщательного и постепенного подбора емкостей или путем изменения скорости машины. Добиться проявления отчетливого резонанса оказалось невозможно. Когда конденсатор соединялся с клеммами машины (предварительно была определена максимальная и минимальная величина самоиндукции якоря и найден средний показатель), емкость, которая давала наибольшую электродвижущую силу, почти соответствовала емкости, электродвижущая сила которой при заданной частоте полностью нейтрализовала самоиндукцию. При увеличении или уменьшении емкости электродвижущая сила, как и ожидалось, падала.
Для таких высоких частот, о которых говорилось выше, влияние конденсатора приобретает огромное значение. Конденсатор становится очень эффективным устройством, способным передавать значительные количества энергии.
Автор считает, что высокочастотные машины могут найти применение по крайней мере в тех случаях, когда не предполагается передача энергии на большие расстояния. Рост сопротивления можно уменьшать в проводах и увеличивать в механизмах, когда требуется тепловой эффект; можно создать более мощные трансформаторы с более высоким выходом и можно гарантированно получать ценные результаты с помощью конденсаторов. Используя высокочастотные машины, автор имел возможность наблюдать влияние конденсатора, которое при других обстоятельствах могло бы выпасть из сферы его внимания. Он очень заинтересовался явлением, которое наблюдал в электрических сетях Ферранти и о котором так много говорят. Компетентные инженеры-электротехники высказали свои мнения, но до сих пор всё это тем не менее выглядит предположением. Несомненно, в высказанных взглядах должна содержаться истина, но поскольку мнения расходятся, некоторые из них, должно быть, ошибочные. Увидев схему г-на Ферранти в «Electrician» от 19 декабря, автор составил свое мнение о результате. При отсутствии необходимых данных он должен был довольствоваться описанием процесса, который, по его мнению, будет несомненно иметь место. Конденсатор осуществляет две функции: 1) он изменяет фазы токов в ответвлениях; 2) он изменяет силу токов. Что касается изменения фазы, действие конденсатора должно заключаться в опережении фазы тока во вторичном контуре в Дептфорде и в его отставании в первичном контуре в Лондоне. Первое проявляется в уменьшении самоиндукции в первичном контуре Дептфорда, и это означает более слабую электродвижущую силу на динамо-машине. Запаздывание фазы первичного контура в Лондоне либо мало, либо вообще не проявляется, поскольку фаза тока во вторичном контуре в Лондоне не может иметь произвольного значения.
Значит, вторая функция конденсатора состоит в увеличении тока в обеих цепях. Неважно, имеется равенство токов или нет, но, чтобы понять значение повышающего трансформатора в Дептфорде, необходимо обратить внимание на то, что увеличение тока производит противоположные эффекты в обеих цепях. В Дептфорде это означает дальнейшее снижение электродвижущей силы в первичном контуре, а в Лондоне — увеличение электродвижущей силы во вторичном контуре. Следовательно, все устройства действуют совместно, чтобы вызвать вышеупомянутое явление. Такие явления происходят, по крайней мере, при выполнении сходных условий. Когда динамо-машина подключена непосредственно к магистрали, ничего подобного произойти не может.
Автору особенно интересны предложения и мнения г-на Суинберна. Г-н Суинберн часто оказывал автору честь своим несогласием с его взглядами. Три года тому назад, когда автор, вопреки широко распространенному среди инженеров мнению, выдвинул идею открытой цепи трансформатора, г-н Суинберн был первым, кто вынес ему приговор, заявив об этом в «Electrician»: «Трансформатор (Теслы) не может быть эффективным; он имеет вращающиеся магнитные поля, и поэтому его магнитная цепь разомкнута». Двумя годами позже г-н Суинберн становится поборником трансформатора с разомкнутой цепью и выражает готовность стать новообращенным. И впрямь, tempora mutantur et nos mutamur in illis[6].
Автор не может придавать большого значения теории реакции якоря в том виде, как она описана в «Industries», хотя, несомненно, в ней есть что-то от истины. Однако интерпретация г-на Суинберна столь широка, что это может означать всё что угодно.
Г-н Суинберн был, видимо, первым, кто обратил внимание на нагрев конденсаторов. Удивление, высказанное способнейшим электротехником, служит поразительной иллюстрацией необходимости проведения широкомасштабных экспериментов. Умелый исследователь, который имеет дело с мельчайшими частицами и изучает тончайшие процессы, должен вызывать гораздо больше доверия к себе, чем тот, кто экспериментирует с аппаратурой в промышленном масштабе; и действительно, в истории науки есть примеры изумительного искусства терпения и проницательной наблюдательности. Но как бы велико ни было мастерство и какой бы проницательностью ни обладал исследователь, поощрение результата и тем самым содействие его изучению пойдут только на пользу. Если бы Фарадей провел только один из своих экспериментов с динамической индукцией в широком масштабе, это принесло бы несомненно огромные выгоды.
По мнению автора, нагрев конденсаторов происходит по трем причинам: во-первых, из-за утечки тока, или проводимости, во-вторых, из-за неидеальных свойств диэлектрика и, в-третьих, из-за пульсации разрядов в проводнике.
Во многих экспериментах он сталкивался с проблемой передачи возможно большего количества энергии через диэлектрик. Например, он применял лампы накаливания с полностью запаянными в стекло концами нитей накаливания, но прикрепленными к внутренним изоляционным оболочкам конденсаторов таким образом, чтобы вся необходимая энергия проходила сквозь стекло с поверхностью конденсатора не более нескольких квадратных сантиметров. Такие лампы могли бы с успехом применяться на практике с токами достаточно высокой частоты. При частоте 15 000 колебаний в секунду нити с легкостью раскалялись добела. Этого можно добиться и при более низких частотах, но необходимо было увеличивать разность потенциалов. К тому же автор обнаружил, что через некоторое время стекло становилось перфорированным, а вакуум исчезал. Чем выше частота, тем дольше лампа может выдержать. Такой износ диэлектрика происходит всегда, когда количество энергии, передаваемой сквозь непроводник определенных размеров и при заданной частоте, слишком велико. Стекло проявляет себя наилучшим образом, но даже и оно приходит в негодность. В этом случае разность потенциалов на пластинах, конечно, слишком велика, и это приводит к потерям в проводимости и неидеальной диэлектрической проницаемости. Если требуются конденсаторы, способные выдерживать высокую разность потенциалов, то единственным диэлектриком, не приводящим к потерям, является сжатый газ. Автор работал с воздухом под огромным давлением, но это направление чревато большим количеством практических трудностей. Он считает: для того чтобы получать конденсаторы, приносящие значительную практическую пользу, следует использовать более высокие частоты. Однако такой проект имеет, кроме других недостатков, один большой, состоящий в том, что система станет непригодной для моторов.
Если автор не ошибается, г-н Суинберн предложил способ возбуждения генератора переменного тока при помощи конденсатора. В течение ряда лет автор и сам проводил эксперименты с целью получения удобного генератора переменного тока с самовозбуждением. Он добивался получения магнитных полей, применяя различные схемы переменных токов, которые могли быть коммутированы без механических устройств. Его эксперименты тем не менее открыли истину, непоколебимую, как гибралтарские столбы. Нельзя получить никакого заметного возбуждения с помощью тока, меняющегося с сингулярным (продолжительным) периодом и неменяющегося. Причина состоит в том, что изменения силы возбуждающего тока производят соответствующие изменения в напряженности поля, результатом чего будет наведение токов в якоре; и эти токи накладываются на токи, полученные от вращения якоря в поле; первые при этом опережают вторые на четверть фазы. Если поле будет расщепленным, возбуждения не возникнет, если оно не будет расщепленным, возникнет некоторое возбуждение, но будут нагреваться магниты. При сочетании двух возбуждающих токов со смещением на четверть фазы возбуждение может произойти в обоих случаях, а если магнит со слоистым сердечником, тепловой эффект сравнительно невелик, так как однородность, напряженность поля сохраняется, и, если бы была возможность создать совершенно однородное поле, возбуждение таким способом дало бы вполне ощутимые результаты. Если такие результаты можно получить, применяя конденсатор, как предложил г-н Суинберн, необходимо сочетание двух контуров, разделенных четвертью фазы, то есть катушка якоря должна быть намотана в двух направлениях и присоединена к одному или двум независимым конденсаторам. Автор проделал определенную работу в этом направлении, но должен отложить описание устройств на неопределенное время.
«The Electrical World», 21 февраля 1891 г.
Данный текст является ознакомительным фрагментом.