Атака из космоса
Атака из космоса
В ближнем космосе — то бишь в межпланетном пространстве Солнечной системы помимо девяти планет присутствует еще множество других космических тел. Большей частью это метеорные тела, астероиды и кометы.
Метеорные тела (метеороиды) — это различные твердые тела, носящиеся в космосе: от массивных глыб до мелких песчинок. Падающие на планеты называются метеоритами (те, что летят и сгорают в атмосфере именуются метеорами; оставляющие яркий светящийся след — болиды). Если планета имеет атмосферу, то метеориты, летящие с космическими скоростями, а значит, имеющие высокую кинетическую энергию, в результате трения раскаляются и сгорают — полностью или частично. Те, что достигают поверхности планеты, при ударе взрываются, образуя кратеры. У Луны и Меркурия отсутствует воздушно-газовая оболочка, поэтому их поверхности изборождены многочисленными кратерами самых разных размеров. На Земле уже выявлено примерно 160 ярко-выраженных кратеров. Большой опасности метеорные тела для земной цивилизации не представляют, чего не скажешь об их больших собратьях — астероидах.
На планеты, в том числе, разумеется, и на Землю, непрерывно падают многие миллионы тонн космической пыли и метеоритного вещества (от 5 до 30 млн. тонн в год). Таким образом, наша планета медленно, но верно наращивает свою массу. Правда и теряет тоже — из верхних слоев атмосферы постепенно улетучиваются молекулы газов, главным образом при увлечении («сдувании») их солнечным ветром. Оседающая на планеты тонкая фракция образована либо в пределах нашей Солнечной системы (в результате столкновений астероидов и метеороидов), либо является пришельцем из дальнего космоса, из межзвездного пространства.
Кометами называют космические тела газового либо каменно-газового происхождения. На расстоянии меньше 5 а. е. (750 млн. км) от Солнца кометы становятся видимыми — их ледяные ядра нагреваются, выделяя огромный шлейф газа и пыли — хвост кометы (отсюда, кстати, и название — греческое слово «kometes» означает «хвостатый», «волосатый»). «Хвост» может достигать в длину десятки километров. В кометном конгломерате обычно преобладают газы: соотношение пыли к газам примерно 1:3. Каждая «косматая» имеет кому — туманную, газово-пылевую оболочку. Именно давление солнечного ветра на кому вытягивает кометный «хвост». Часто комета имеет два отдельных шлейфа — газовый и пылевой. Плотность этих «хвостов» невысока, и вещество настолько разрежено, что почти полностью прозрачно. Доступны же нашему наблюдению эти дымчатые следы лишь благодаря подсветке солнечными лучами (молекулы газа ионизируются, а пылинки преломляют и рассеивают свет).
Размеры комет разнятся: их ядра могут достигать в поперечнике нескольких километров и соответственно иметь кому диаметром до 100 тысяч километров. Например, достаточно хорошо изученная комета Галлея имеет ядро неправильной формы и размерами 7,5 на 14 км. Состав ядра — смесь льда (обычная вода плюс углекислота и метан) и пылевых частиц. Но имеются данные о кометных ядрах размерами до 100 км. Такие кометы-гиганты, конечно же, могут представлять для землян большую опасность — тем более учитывая их огромную скорость в десятки километров в секунду (может достигать 250000 км/час).
Численность комет в Солнечной системе колоссальна — ученые называют цифру во многие миллионы тел. Считается, что кометы образуются либо в результате вулканических выбросов с планет в межпланетное пространство, либо формируются в гигантском газово-пылевом облаке возле границ Солнечной системы — облаке Оорта, названном так в честь голландского астронома XX века Яна Хендрика Оорта. Оорт в 1950 г. выдвинул гипотезу о происхождении комет из массивного облака сферической формы. Правда, он полагал, что подобный объект располагается очень далеко от границ нашей Солнечной системы — от 10 тысяч до 150 тысяч астрономических единиц от Солнца. Но спустя всего год американский астроном и космолог Джерард Копейр высказал свое, отличное от оортовского, предположение о существовании за планетой Нептун (то есть в диапазоне 35–50 а. е. от Солнца) пояса планетоидов. В дальнейшем его предположения начали подтверждаться, и теперь многие астрономы разделяют ту точку зрения, согласно которой именно в поясе Копейра зарождаются долгопериодические и гиперболические кометы. То есть облако Оорта — диффузное кометное облако, располагается в поясе Копейра, включающем область распространения транснептуновых и трансплутоновых объектов.
Астероиды (малые планеты) — довольно крупные (но значительно меньше планет) космические тела, имеющие каменное или железокаменное строение. Поперечник их может достигать от одного до нескольких сот километров. Впрочем, диаметр многих из них не превышает пары-тройки сотен метров. Всего в Солнечной системе их насчитывается свыше 40 тысяч. Но это лишь те, что доступны наблюдению. По некоторым подсчетам их более 100 тысяч.
Есть среди астероидов такие, которые несут потенциальную угрозу земной цивилизации — их орбиты пересекаются с орбитой Земли, отсюда возрастает вероятность их столкновения с нашей планетой. Их выделили в отдельную группу под названием Аполло. Поначалу было выявлено три десятка подобных тел диаметром от 1 до 8 км. Такие астероиды относятся к III классу и представляют значительную опасность для Земли. А есть ведь еще I и II классы — астероиды-гиганты. Впоследствии список угрожающих нам астероидов все время пополнялся.
В конце прошлого века в США была запущена программа «Космический щит» («Spaceguard»), нацеленная на изучение и детальное описание крупных астероидов — размерами своих поперечников свыше километра. Когда программа была завершена и подготовлен доклад «Отчет о космической безопасности», в нем говорилось о выявлении около тысячи подобных тел, могущих представлять опасность для земной жизни. Ныне программа продолжена — теперь астрономы пытаются обнаружить астероиды диаметром от сотни метров. На сегодня выявлено еще три тысячи опасных тел. Если падение астероида-гиганта на планету способно уничтожить земную цивилизацию и нанести колоссальный ущерб биосфере в целом, то тела поменьше при своем столкновении с Землей приведут к региональной катастрофе — разрушения коснутся обширных территорий площадью в десятки и сотни километров.
Ученые смоделировали последствия столкновения Земли с крупным астероидом. После удара в атмосферу поднимутся огромные массы пыли, которая распределится по всей воздушной оболочке и плотно закроет земную поверхность от живительных солнечных лучей. В результате погибнет вся растительность, жизнедеятельность которой основана на процессах фотосинтеза — переработки углекислого газа в кислород и органическое вещество при обязательном условии поглощения фотонов лучистого потока, поступающего от Солнца. Далее гибнет фауна, в том числе люди — просто от голода. Выживут лишь те микроорганизмы (так называемые миксотрофы), питание которых основано на хемосинтезе — переработке неорганических веществ в органические. Впрочем, по результатам недавних экспериментов ученых, удалось доказать, что и некоторые фототрофы (организмы, которым необходим свет) тоже выживут — за счет миксотрофов. Где-то через полгода атмосфера вновь начнет пропускать солнечную радиацию. Этого времени хватит, чтобы выжить некоторым фототрофам — бактериям и растениям. Ну, в общем, биосфера Земли будет состоять из микроорганизмов и примитивных растений. Все высокоорганизованные формы жизни вымрут.
В связи с этим резонно возникают два наиглавнейших вопроса: можно ли будет разрушить астероид-убийцу или отклонить его курс? И если все-таки он прорвется к Земле, смогут ли люди — пусть избранные счастливчики — на время скрывшиеся в неких подземных бункерах (а также возможно на геостационарных станциях), чтобы переждать катаклизм и его ближайшие последствия, выжить в дальнейшем, когда тучи рассеются, и Солнце вновь согреет Землю? На второй вопрос однозначного ответа нет. Что касается первого, то уже сейчас строятся определенные планы по созданию систем обезвреживания астероидов-убийц.
Решений два: разрушение объекта и отклонение траектории его полета. Выдвигались предложения по доставке на астероид ядерных зарядов, чтобы взорвать его и расколоть, таким образом, на более мелкие части и осколки. Этот путь не столь приемлем, как попытка изменить курс небесного тела. Дело в том, что невозможно спрогнозировать, во-первых, действенность самих подрывных зарядов, а во-вторых, возможные траектории разлетевшихся обломков.
Чтобы отклонить курс угрожающего Земле астероида, необходимо подорвать ядерные заряды рядом с ним. Опять же это не дает никакой гарантии успеха. Крупные астероиды движутся с огромной скоростью — порою до 70–80 тысяч км в час. Послать к нему ракеты с ядерными боеголовками — все равно что произвести выстрел вхолостую. Был предложен ряд альтернативных решений. Одно из них: перекраска астероида в целях изменения светоотражения и теплоотдачи, что приведет к изменению курса его полета. На том же принципе базируется метод обертывания астероида в особую высокоотражающую пленку. Другое решение основывается на использовании аппаратов с ядерными двигателями, которые пристыкуются к «космическому хищнику» и столкнут его на другую орбиту. В общем, способов обезвреживания «небесного убийцы» предлагается много, а вот гарантий эффективности — никаких.
Пожалуй, лишь Голливуд как всегда на высоте. Вспомним фильм «Астероид». Гигантскую глыбу, летящую к нам из глубин космоса, сумели обезвредить, послав баллистические ракеты. Булыжник взорвали — всеобщее ликование. Спустя несколько лет выпустили продолжение этого фильма-катастрофы. В «Астероиде-2» после того, как рассеялись обломки взорванного гиганта, выясняется, что за ним летит еще больший космический монстр. А весь запас ракет с ядерными боеголовками, увы, исчерпан. У американцев, но не у русских и китайцев. Китай тут же соглашается предоставить свой ядерный арсенал, а вот Россия поначалу артачится, но после небольшой разводки со стороны своих заокеанских соседей предоставляет столь необходимые ракеты. Тут в дело вмешивается гениальный ученый женского пола, которая в самый последний момент успевает убедить командование подорвать ракеты перед астероидом — дабы изменить курс. Одним словом, хеппи-энд. Не многим отличается и сюжет фильма «Армагеддон».
А вот в блокбастере «Столкновение с бездной» хоть комету и разорвали на части (ценой гибели экипажа космического корабля), но меньший кусок все равно прорвался к земле-матушке и рухнул в океан-батюшку, вызвав гигантскую приливную волну. Суперцунами смыли все прибрежные поселения вместе с теми, кто не успел спасться на возвышенностях. Слегка подмоченный, но все же хеппи-энд — не в пример мрачному финалу «Знамения».
Итак, крупное космическое тело, направляющееся к Земле, имеет больше шансов упасть на нее, вызвав планетарную катастрофу со всеми вытекающими отсюда последствиями. К таковым относятся, в том числе, и тектонические подвижки. То есть удар астероида или кометы спровоцирует извержение множества вулканов. К тем мегатоннам пыли и тучам дыма и копоти, которые вызовет удар и взрыв, добавятся новые — от вулканической деятельности. То, что поднимется в нижние и средние слои атмосферы, рассеется и осядет на поверхность планеты примерно через полгода-год. Но частицы пыли и пепла, попавшие в верхние слои земной атмосферы, которые не менее эффективно создадут непроницаемый для солнечного излучения экран, продержатся дольше — пять — шесть лет. Таковы расчеты, проделанные в рамках моделирования «ядерной зимы» — последствий глобального ядерного катаклизма. Эта модель весьма приближена к сценарию постастероидного мира — к модели «астероидной зимы».
К тому же следует учитывать чрезвычайно низкие температуры (на десятки градусов ниже обычных), которые установятся в приповерхностных областях — ландшафтах и нижнем слое атмосферы, в которых и протекает жизнедеятельность человечества и биосферы в целом. Впрочем, есть прогнозы, что в последующие годы температура наоборот значительно повысится. Это будет вызвано парниковым эффектом. При землетрясениях и извержении вулканов высвобождаются значительные запасы метана (в том числе донные залежи — при моретрясениях). Метан попадает в атмосферу, воспламеняется от молний. В результате имеем мировой пожар. Атмосфера переполняется углекислым газом (двуокисью углерода), который и вызывает глобальный парниковый эффект, превращая наш мир в парилку. Вначале (в течение полгода) страшные холода, затем (на длительный срок) ужасающая жара.
Еще один безрадостный аспект — гарь и копоть, поднявшиеся в верхние слои атмосферы, войдут в химические реакции с озоном и вызовут его распад и превращение в другие соединения. В результате в значительной степени пострадает озоновый экран, защищающий нас от жесткого космического излучения. Радиация будет свободно проникать вплоть до поверхности планеты, убивая — сразу или постепенно — все живое.
Чтобы выжить в подобной катастрофе, людям необходимо спланировать целый ряд мер, а для этого решить множество трудных проблем. К ним относятся следующие. Насколько прочными (то есть тектонически устойчивыми) будут подземные бункеры для укрытия людей? Есть ли необходимость сооружать их исключительно в скальных основаниях, и на какой, кстати, глубине? Хватит ли запасов пищи, и каковы условия ее хранения? Где разместить образцы флоры и фауны — семена растений и здоровых половозрелых особей животных — для попытки последующего заселения ими планеты? Смогут ли спасшиеся люди поддерживать в течение длительного времени условия содержания и кормления этих организмов? Другими словами — возможно ли будет построить еще и «ковчеги» для братьев наших меньших? Если удастся переждать «астероидную зиму» в течение нескольких лет, выходить животных и не дать засохнуть или сгнить семенам и спорам растений, то при выходе на поверхность возможно ли будет вновь населить Землю — животными, растениями, людьми? Речь идет о том, что экосистемы планеты, существовавшие миллионы лет практически неизменными (со всеми своими пригодными для жизни параметрами — почвенно-грунтовыми, климатическими, трофическими), в результате подобной катастрофы будут необратимо нарушены. Сможет ли биосфера Земли вновь воссоздаться? И за какой срок?
Дело в том, что все организмы без исключения могут существовать и размножаться лишь при определенных экологических условиях — физико-химических, геологических и биологических. А главное, они успешно осуществляют свою жизнедеятельность лишь в тесной связи с другими элементами экосистемы. То есть биогеоценозы — это взаимосвязанные коэволюционирующие комплексы, где каждое звено (будь то микроорганизм или высшее животное) играет определенную роль и таким образом представляет огромную важность для функционирования всей системы. Как вновь связать многие виды сохраненных человеком животных и растений в единые природные комплексы — экосистемы (биогеоценозы)? Положиться на врожденную мудрость самих существ? На их генетическую память?
Такие экосистемы, созданные природой при участии человека (агробиоценозы, антропогенные ландшафты), нужны хотя бы для того, чтобы вновь рожь с пшеницей заколосились да зацвели сады, а окрестности бы огласило мычание коров и блеяние овец. Чтобы с голоду опять же не помереть, ведь дикая природа будет к тому времени напрочь уничтожена. Одним словом, вопросов тут больше, чем ответов.
Теперь о насущном. Одним из основных кандидатов на роль космического агрессора прочат крупный астероид Апофис (размеры 300–350 метров, масса 100–250 млн. тонн, по другим данным — 50 млн. тонн). Впервые он попал в поле зрения американских ученых из аризонской обсерватории Китт-Пик в 2004 году и поначалу именовался 2004 MN4. Спустя год его назвали 99942 Апофис. Исходя из наблюдений, астрономы вычислили, что он пройдет близко к Земле в 2029, 2036 и 2069 годах. В апреле 2029-го Апофис пройдет на минимальном расстоянии, равном 37 тысячам километров (орбита геостационарных спутников). Во время любого из этих сближений орбита Апофиса может измениться таким образом, что он подпадет под влияние гравитационного поля Земли и, будучи притянут, упадет на нашу планету. Вероятность столкновения поначалу оценили в 1:45000, затем ее существенно понизили — до 1:250000. то есть вероятность падения Апофиса на Землю — ничтожна! Но жизнь, как мы знаем, часто опровергает любые расчеты — даже математические. В любом случае падение тяжеленного мегабулыжника вызовет чудовищный взрыв (порядка пятисот мегатонн). Даже название у него не случайное: у древних египтян Апоп, или Апеп (греческое произношение — Апофис) был богом хаоса и разрушений, точнее — огромным драконом, олицетворяющим мрак и зло, извечным врагом бога солнца Ра.
Возможная траектория падения пролегает от нашей Сибири до Центральноамериканского региона. Если астероид 99942 врежется в твердь, высота взрыва достигнет пятидесяти километров, а диаметр кратера — 6 км. Если же рухнет в Тихий или Атлантический океан, то цунами высотой под двести метров смоют множество прибрежных населенных пунктов (гигантские волны обрушатся на территории многих стран и проникнут вглубь на расстояние до 300 км.). Хотя биосферу порядком потрясет, но, скорее всего, она выдержит. Последствий типа «астероидной зимы» не будет. В конце концов, на протяжении всей геологической истории живые организмы и к жестоким холодам приноравливались, и к небывалой жаре приспосабливались. Потопы же, ураганы и цунами, как и извержения вулканов, — явления временные. Но подготовиться все равно нужно: на Бога надейся, а сам не плошай!
Данный текст является ознакомительным фрагментом.