Главный враг
Главный враг
Любое атомное оружие имеет два поражающих фактора – быстрый и долговременный. Быстрый – это взрыв невиданной и невообразимой человечеством доатомной эпохи силы, сметающий все живое и неживое в радиусе многих километров вокруг своего эпицентра. Ущерб от него чудовищен, однако мгновенен – взрывная волна распространяется за несколько секунд и исчезает навсегда. Второй фактор невидим и неосязаем, но гораздо более коварен – это радиация, высвобождающаяся во время взрыва и заражающая территорию на долгие годы, а иногда и тысячелетия, в зависимости от типа начинки атомной бомбы. Его эффект, вначале незаметный, может проявиться через годы, а может и вовсе дать о себе знать только внукам людей, в свое время оказавшихся в зоне высокой радиации. Этот невидимый враг убил выжившую во время взрыва Хиросимы Садако Сасаки и погубил здоровье многих японцев, живших впоследствии на территории бомбежек 6 и 9 августа 1945 года.
Справедливости ради надо сказать, что радиационное заражение тогда было не столь сильным, каким оно могло бы быть, скажем, от взрыва боевой ядерной боеголовки современного образца. Сброшенные на японские города бомбы «Малыш» и «Толстяк» были достаточно примитивными с точки зрения современных технологий. К примеру, в «Малыше» реакция деления происходила всего в 700 граммах урана, что в тысячи раз меньше, чем во время работы ядерного реактора. Тем не менее и эта радиация отразилась на здоровье десятков тысяч людей, многие из которых умерли в последующие годы.
Во времена бомбардировок Хиросимы и Нагасаки само явление радиации еще не было широко известным, и не существовало такого понятия, как радиационная безопасность. Люди, многие из которых вовсе не подозревали о существовании какой-то опасности в районе взрыва, селились на старых местах уже вскоре после бомбежки; правительство этому особенно не препятствовало. Главным шоком и главной скорбью японцев, связанной с атомными бомбардировками, стали именно сами взрывы и гигантские разрушения от них, а не последующее заражение территории. Именно поэтому в их сознании атомная угроза прежде всего выглядит как угроза атомного оружия, а не радиации. Этим частично можно объяснить и готовность японцев развивать атомную энергетику, несмотря на то что они продолжают оставаться самыми последовательными борцами за полное уничтожение и запрет всех ядерных арсеналов.
Но за прошедшее со Второй мировой войны время понятие радиоактивного излучения и связанной с ним угрозы стали известны любому образованному человеку и даже вошли в массовую культуру, породив немало фантастических произведений, сюжет которых строится вокруг этой угрозы. А после аварии на Чернобыльской АЭС мир и вовсе охватила настоящая радиофобия, сильно подорвавшая, кстати говоря, авторитет и перспективы всей атомной отрасли. Новый ее всплеск случился после аварии на «Фукусиме-1», мир охватила паника, подогреваемая тем, что никто толком не понимал, насколько опасны выбросы со станции, куда они могут добраться и как именно повлиять на людей. Но достаточно было одного магического слова – радиация, – чтобы люди по обе стороны океана бросились скупать не только дозиметры и йод (обыкновенный, дабы с его помощью защититься от смертельно опасного йода-131), но и места в бункерах, заблаговременно построенных на случай конца света, – в США цена «номера» в таком заведении подскочила в 10 раз.
Что же представляет собой пресловутая радиация? Это различные виды частиц и электромагнитных полей, испускаемые радиоактивным веществом и способные ионизировать другие вещества, то есть наполнить их «лишними», нехарактерными частицами. Какие вещества являются радиоактивными? Если вспомнить школьные уроки химии, к радиоактивным относятся химические элементы из нижних рядов таблицы Менделеева, то есть вещества с высокой атомной массой, ядра которых неустойчивы и склонны к распаду за определенный период времени.
Существуют разные типы радиоактивности, то есть разные вещества обладают способностью к различным типам излучения. Наиболее опасными являются альфа-излучение (положительно заряженные частицы из двух протонов и двух нейтронов, идентичные атому гелия) и бета-излучение (поток отрицательно заряженных электронов или положительно заряженных позитронов), однако они обладают слабой проникающей способностью, и для защиты от них достаточно любой одежды. Серьезную опасность для здоровья человека представляет попадание альфа– или бета-частиц внутрь организма человека, например, с пищей; на коже оставляют радиационные ожоги, но внутренних органов сквозь нее не достигают.
Наибольшей проникающей силой обладает гамма-излучение (излучение фотонов), поэтому на практике оно является одним из самых опасных – гамма-лучи могут проникнуть под многие преграды, и от них очень непросто скрыться. Внутри ядерного реактора имеет место нейтронное излучение – поток обладающих огромной энергией нейтронов, высвобождающихся во время реакции ядерного распада. В зараженной радиоактивностью местности этих реакций уже нет, поэтому нейтронное излучение там отсутствует, однако при нарушении герметичности реактора потоки нейтронов могут ионизировать окружающую среду вокруг него, поэтому для аварии на «Фукусиме-1» этот вид излучения также актуален.
Также существует всем известное рентгеновское излучение, по своим свойствам наиболее близкое к гамма-излучению.
Во всех новостях о японской аварии (и в предыдущих главах этой книги) использовалась хорошо нам теперь знакомая единица измерения – зиверт, который бывает также милли– и микро– (на самом деле, как и для любой единицы измерения в десятеричной системе, возможно и множество других приставок), однако это не единица измерения радиоактивности вообще, а дозы радиации, полученной живым организмом. Единицей же измерения радиоактивности служит беккерель (Бк), который соответствует одному распаду в секунду. На практике это совсем немного, поэтому помимо кило-, мега– и прочих беккерелей используется единица кюри, получившая свое название от фамилии знаменитой супружеской четы, сделавшей огромный вклад в ядерную физику (а Мария Кюри даже стала ее жертвой – она умерла от лейкемии, вызванной многолетней работой с радиоактивными материалами). 1Ки = 37 млрд. Бк.
Кюри и беккерелями измеряют непосредственно количество распадов в единицу времени, которое еще не говорит о его влиянии на окружающую среду, величина же воздействия ионизирующего излучения (экспозиционная доля) измеряется в рентгенах, а на практике чаще в микрорентгенах и миллирентгенах. Приборы, измеряющие радиацию, показывают именно мощность экспозиционной дозы в единицу времени (обычно в час). Воздействие радиации непосредственно на человека раньше зачастую измеряли в бэрах (биологический эквивалент рентгена) – именно эту единицу можно встретить в описаниях чернобыльских событий, но сейчас общепринятым является уже известный нам зиверт, который равен 100Р и является огромной величиной. В Фукусиме на зиверты счет шел только непосредственно внутри реакторов, за их же пределами речь шла только о микро– и миллизивертах. Уровень излучения на местности также измеряется в зивертах в единицу времени, к примеру, уровень в 500 мЗв/ч означает, что, если провести час в этом месте, человек получит дозу в 500 миллизивертов – это очень серьезная величина.
Полностью избежать радиации невозможно – практически в любой точке планеты в природе или в творениях человеческих рук присутствуют элементы, которые «фонят». Нормальным естественным уровнем радиации считается 0,1 мкЗв/ч (по большей части от природного газа радона-40, исходящего из-под земли, поэтому жители первых этажей рискуют больше), но в некоторых местностях он может доходить до 1 мкЗв/ч – все еще ничтожная величина, не мешающая тому, чтобы люди жили здесь хоть всю жизнь и оставались здоровыми. Кроме того, любой современный человек периодически подвергается повышенным уровням излучения – например, при рентгенографических исследованиях (кому из нас никогда не делали рентген?), в самолете на большой высоте (уровень может доходить до 20 мкЗв/ч) и даже при прохождении сканирующих рамок в общественных местах. Для работников АЭС «Фукусима-1» из-за чрезвычайности ситуации максимальный уровень облучения был поднят со 100 до 250 мЗв (250 000 мкЗв) – совершенно огромная и «недостижимая» для обычного человека величина. При получении подобной дозы они уже проходили обязательное медицинское обследование и, если надо, получали лечение, однако непосредственное влияние на здоровье оказывают дозы еще большие – от 500 мЗв. Лучевая болезнь начинается при дозе 1–3 Зв (1000–3000 мЗв), облучение более 10 Зв означает почти неминуемую смерть в течение нескольких дней.
Здесь важно сразу отметить одну деталь, на которой обычно не акцентировали внимание СМИ, описывающие происходящее в Японии, – случайно или намеренно, желая пощекотать нервы читателям. Когда сообщалось о повышении уровня радиации, скажем, в Токио, речь шла о превышении не максимального, а естественного уровня радиации. К примеру, сенсационный заголовок типа «В Токио уровень радиации вырос в 100 раз» означал, что радиационный фон в японской столице составил вместо 0,1 мкЗв/ч все еще ничтожные 10 мкЗв/ч. Действительно, это стократное увеличение, но его воздействие на токийцев было в два раза менее существенным, чем если бы все они вдруг очутились в летящем самолете – очевидно, спасаясь от радиации. А поскольку подобные увеличения радиационного фона если и имели место, то были очень кратковременными, никто из жителей Токио на самом деле не имел шансов получить дозу больше, чем при перелете до не столь далекого Сан-Франциско.
Если вновь взглянуть на сводки новостей из Фукусимы, то самая большая величина, которая там фигурирует – 1000 мЗв/ч (1Зв/ч). Именно такой радиоактивностью обладала часть воды, утечку которой из реактора много дней пытались приостановить ликвидаторы. То есть близости такой воды в течение 15 минут достаточно для максимально разрешенной дозы работников АЭС, а в течение пары часов – для почти гарантированной лучевой болезни со всеми возможными последствиями, включая рак, нарушение иммунной системы, генетические изменения, сокращение продолжительности жизни и т. п. Однако работники станции соблюдали необходимую осторожность, и никто из них подобному облучению, по крайней мере по официальным данным, не подвергся.
Больше трех десятков человек были освобождены от работы на станции в связи с превышением максимальной дозы радиации, установленной в размере 250 мЗв. Это значит – люди достигли предела того уровня, который считается относительно безопасным, после чего им стали оказывать необходимую помощь, и есть основания надеяться, что фатального вреда радиация их здоровью не причинит, даже несмотря на то, что уровень в 250 мЗв считается нормой только в этой экстренной ситуации, до этого он составлял 100 мЗв. Уверенными в отсутствии опасности для их здоровья все же быть нельзя – во-первых, данные об уровнях радиации вполне могут быть неточными (как мы помним, дозиметров на станции долгое время не хватало), во-вторых, помимо непосредственной дозы есть и другие показатели серьезности облучения, да и вообще, радиация слишком коварная и незаметная вещь, чтобы точно говорить о состоянии здоровья людей. Вообще, в современной медицине принято положение, что любое облучение, не связанное с естественными источниками, считается вредным и опасным «по умолчанию». Однако важен тот факт, что в Фукусиме, в отличие от Чернобыля, с самого начала внимательно следили за уровнем облучения, которому подвергаются люди, и старались ни в коем случае не допускать избыточных доз. Впрочем, как бы ни скакала радиация при многочисленных событиях во время ликвидации (выбросы пара, взрывы водорода, утечка воды), ее уровень даже близко не приблизился к чернобыльскому, где пожарные тушили развороченный реактор под прямым излучением в сотни рентген, причем толком не понимая этого, так как реальный уровень опасности никому не сообщался. В Чернобыле первые пожарные и работники станции уже через полчаса начинали падать в обморок, испытывать рвоту и головокружение из-за огромных доз радиации, а в считаные недели многие из них умирали на глазах врачей, которые могли только развести руками – в Фукусиме же ничего подобного не происходило.
Тем не менее, помимо непосредственно уровня радиации важнейшую роль играет изотопный состав радиоактивных веществ, непосредственно влияющий на то, насколько они усваиваются организмом. К примеру, даже если человек подвергся относительно небольшой дозе излучения, но в его организм при этом проник йод-131, он может там отложиться и впоследствии вызвать рак щитовидной железы. К сожалению, без выбросов тяжелых и опасных изотопов в Фукусиме не обошлось.
Первоначальные выбросы из реакторов (в связи с управляемым стравливанием пара и взрывами водорода) содержали в основном инертные газы, которые не усваиваются человеческим организмом, а к тому же быстро рассеиваются в атмосфере и имеют очень короткий период полураспада, то есть их негативное действие на окружающую среду успевает закончиться еще задолго до того, как могли бы пройти радиоактивные осадки. Однако вскоре в районе станции были обнаружены более тяжелые элементы, являющиеся продуктами распада урана и плутония (самих этих элементов, наиболее опасных, обнаружено не было, хотя опасения такие имелись). Это йод-131 с периодом полураспада 8 дней, цезий-137 (133 года) и стронций-90 (28 лет). Как видно, два последних сохраняют свою активность в течение длительного времени, а это значит, что территория вокруг станции обречена на изоляцию в течение как минимум нескольких десятилетий. Наличие радиоактивных цезия и стронция в Зоне отчуждения вокруг станции не означает само по себе, что природа там обречена на умирание или на шокирующие метаморфозы (вроде знаменитого «рыжего леса», возникшего рядом с Чернобыльской АЭС через несколько дней после аварии), однако сам факт их присутствия делает любую деятельность человека там слишком опасной – никто не может гарантировать, что именно в этой самой пылинке, которую вы случайно вдохнули у себя на заднем дворе, не содержится доза радиоактивных изотопов, достаточная для возникновения серьезного заболевания. Кроме того, движение атмосферы могло перенести частички радиоактивной пыли на большие расстояния и извергнуть их на землю в виде радиоактивного дождя в каком-нибудь самом неожиданном месте. Хотя, повторимся, количество выбросов было не столь значительным, чтобы не рассеяться достаточно быстро по атмосфере в небольшой концентрации, случайно «подхватить» эти изотопы можно будет в течение еще нескольких десятилетий. Поэтому уже сейчас понятно (и почти сразу было понятно), что многолетнее существование Зоны отчуждения в радиусе хотя бы 20 км вокруг станции неизбежно, с другой стороны, разговоры о том, что вся Япония окажется непригодной для жизни, мягко говоря, преувеличены.
С йодом-131 ситуация несколько иная – его период полураспада всего 8 дней, но, во-первых, это не значит, что через 8 дней он полностью потеряет свою активность (на то и полураспад), во-вторых, попасть в организм жителей не только Японии, но и других стран (включая российский Дальний Восток и даже далекую Калифорнию) он, теоретически, мог и за это время, а в-третьих, он особенно хорошо усваивается организмом. Дело в том, что человеку необходим йод для нормального функционирования щитовидной железы, и если организм испытывает нехватку обыкновенного йода, его место с легкостью может занять радиоактивный йод-131. А «внедрившись» в щитовидную железу, он станет постоянным источником ее облучения, что с очень высокой долей вероятности может привести к раку этого органа. Именно этим фактом была вызвана имевшая место во многих странах «йодная истерия» – люди скупали йодные таблетки и обыкновенный йод и судорожно их принимали, даже не всегда удосужившись узнать, как это делать правильно (йод в чистом виде внутрь принимать ни в коем случае нельзя, он очень токсичен и может вызвать в том числе и летальный исход – так что можно пить только раствор в небольшой концентрации).
Еще одним аспектом заражения окружающей среды, а в перспективе, возможно, и важнейшим, является загрязнение радиацией вод. Как известно, ликвидаторам не удалось полностью избежать утечки радиоактивной воды в океан, и хотя речь шла прежде всего о низкорадиоактивной воде, поводов для спокойствия это не дает. Во-первых, эта информация может быть не точной, во-вторых, и низкорадиоактивной воды в океан попало предостаточно (уже к концу апреля ее количество превысило 500 тонн), а контролировать перемещение радиации по Мировому океану практически невозможно. TEPCO постаралась построить некие заградительные сооружения в бухте у станции, которые действительно смогли сдержать распространение значительной части радиации, однако очевидно, что другая ее часть все же ускользнула, и ей ничто не мешает облучить того самого тунца, банку с консервами из которого через год откроют в Мехико или Ростове-на-Дону. Также океанская вода имеет свойство испаряться, и радиоактивные частицы из нее могут попасть в легкие людей просто с дыханием. И хотя наиболее пессимистичные прогнозы о полном отравлении Мирового океана и призывы целиком отказаться от морепродуктов вряд ли имеют достаточно оснований – уровень загрязнения все же не тот – заражение океанских вод это наиболее тревожное последствие выбросов с «Фукусимы-1» из-за своей непредсказуемости. Пока еще прошло слишком мало времени, чтобы мы могли объективно оценить его эффект.
Данный текст является ознакомительным фрагментом.