6.3. Коллекция звездолетов
6.3. Коллекция звездолетов
Когда Альберт Эйнштейн впервые опубликовал свои формулы, мир был заворожен их красотой и теми следствиями, которые из них выводились. Популяризаторам и фантастам нравилось обсуждать проблематику релятивистских скоростей и «парадокс близнецов», который служит отличной иллюстрацией разного течения времени в различных системах в зависимости от их скорости. Все это выглядело очень пикантно. Лишь немногие сообразили, что Эйнштейн своими формулами сильно ограничивает возможности космической экспансии за пределы Солнечной системы. Получалось, что не существует и в принципе не может существовать никакого способа преодолеть световой барьер и долететь до ближайшей звезды раньше, чем за пять лет. Еще столько же уйдет на обратную дорогу. Немного утешал факт замедления времени на звездолете: по крайней мере экипаж не успеет сильно состариться.
В какой-то момент к мысли о необходимости потратить годы на полет к соседней звезде привыкли, а энтузиазм начала космической эры породил несколько технически обоснованных проектов релятивистских кораблей на известных нам физических принципах. В качестве цели рассматривались Альфа Центавра, Звезда Барнарда, реже – Эпсилон Эридана и Тау Кита.
Было ясно, что ни двигатели на химическом топливе, ни электроракетные двигатели не способны обеспечить разгон до скоростей, хоть сколько-нибудь сопоставимых со скоростью света в вакууме, равной 299 792 км/с. Прежде всего ученым пришло в голову использовать так называемую «фотонную тягу» («квантовую тягу»). Если наша задача состоит в том, чтобы приблизиться к скорости света, то выглядит логичным использовать сам свет в качестве движущей силы. Физики подсказывают, что при встрече частицы вещества с частицей антивещества произойдет аннигиляция с превращением массы в излучение, которое можно отразить особым зеркалом, создавая импульс движения.
Основоположником теории фотонных звездолетов считается немецкий ученый Эйген Зенгер (мы упоминали его в связи с пределами возможностей химических топлив). Он написал фундаментальный труд «К механике фотонных ракет» (“Zur Mechanik der Photonen-Strahlantriebe”), изданный на русском языке в 1958 году. Ключевой идеей Зенгера было создание «абсолютного отражателя», который был бы способен отражать гамма-кванты высокой энергии, образующиеся при аннигиляции и способные глубоко проникнуть в толщу вещества. Хотя фантасты и популяризаторы с удовольствием описывали в своих текстах фотонные звездолеты как дело ближайших лет (достаточно вспомнить творчество Аркадия и Бориса Стругацких, которые относили создание первых космических кораблей на фотонной тяге ко второй половине 1980-х годов), никто в принципе не мог сказать, как изготовить такой «абсолютный отражатель». Кроме того, физики отмечают, что при аннигиляции выделяются не только гамма-кванты, но и заряженные частицы и нейтрино, причем значительная часть энергии теряется безвозвратно. И еще одно: где взять антивещество, которое потребуется, чтобы разогнать звездолет до субсветовой скорости? Самый оптимистический расчет для разгона корабля массой в 100 т до скорости 0,9 световой дает потребность в 25 млн т антивещества (еще столько же потребуется нормального вещества для аннигиляции). В достижимом пространстве достаточных запасов природного антивещества не наблюдается, поэтому его нужно как-то синтезировать. По современным оценкам, один грамм антивещества будет стоить 10 трлн (десять триллионов!) долларов. И технологий, которые снизили бы цену хотя бы на порядок, пока в принципе не существует. Приходится признать, что «фотонолеты» Стругацких так и останутся фантастикой.
Размышления о том, как можно было бы снизить массу звездолета хотя бы за счет снижения массы топлива, породили интересную концепцию, которая вошла в историю под названием «межзвездный прямоточный двигатель Бассарда» (англ. Bussard ramjet). Идею предложил в 1960 году американский физик Роберт Бассард, и она состоит в том, чтобы с помощью электромагнитной воронки захватывать вещество межзвездной среды (водород и космическую пыль), используя его в термоядерной реакции для создания тяги; при этом в качестве катализатора может служить опять же антивещество.
Межзвездный зонд с двигателем Бассарда
Ключевая проблема такого «прямоточника» в том, что электромагнитная воронка отнюдь не будет выполнять функцию массозаборника так, как предполагалось Бассардом, – скорее, она будет вести себя подобно «тормозу» и корабль в принципе никуда не полетит. Кроме того, для эффективной работы воронки нужно сначала разогнать корабль до релятивистских скоростей, т. е. в любом случае понадобится какая-то начальная ступень, построенная на других принципах. Получается, двигатель Бассарда выглядит еще хуже, чем фотонный, и вряд ли ему найдется применение в обозримом будущем.
Понимание, сколь значительные ресурсы будет потреблять в ходе своего полета релятивистский корабль, привели изобретателей к мысли использовать внешнюю силу для разгона. Сразу напрашивается идея «солнечного парусника». Эффект давления света на отражающую пластину открыл еще в 1899 году русский физик Петр Лебедев. К сожалению, сила этого давления очень мала, поэтому понадобятся колоссальные зеркальные паруса, чтобы разогнать даже небольшой корабль. Например, для движения по оптимальной «низкоэнергетической» траектории полета от Земли к Марсу аппарата весом 100 кг потребуется парус площадью 46 м2. Но самое неприятное – чем дальше мы удаляемся от нашего светила, тем меньше давление на парус, т. е. он пригоден только для путешествий по Солнечной системе и только в одну сторону.
Тогда было найдено изящное решение – «парусник» надо разгонять не с помощью Солнца, а квантовым генератором «мазер», излучающим в микроволновом диапазоне. Такую оригинальную идею первым выдвинул физик Роберт Форвард в начале 1980-х годов. Он воплотил ее в наглядном проекте «Звездная дымка» (с англ. “Starwisp”). Сверхлегкий зонд массой всего 20 г представляет собой тончайшую сетку-парус. Его разгоняет с ускорением 115 g узконаправленный микроволновой луч мощностью 10 гигаватт, генерируемый спутником на околоземной орбите. Такое ускорение позволит достигнуть скорости в 0,2 световой в течение недели! В узлах сетки расположат микросхемы, обладающие элементарной логикой и светочувствительностью. Когда до системы Альфы Центавра, выбранной в качестве цели, останется совсем немного, передатчик у Земли снова включится и «затопит» чужую систему потоком микроволновой энергии. Используя проволочные ячейки сетки как антенны приемников, микросхемы «Звездная дымка» соберут достаточное количество энергии для своих оптических датчиков и логических схем, чтобы увидеть и сформировать образ планет, находящихся в системе. Направление, с которого поступают микроволны воспринимается в каждой ячейке сетки, и эта информация о направлении используется микросхемами зонда для того чтобы использовать ячейки уже как антенны передатчиков, излучающих сигнал, содержащий данные об открывшейся зонду картине, обратно на Землю.
Тогда же Форвард выдвинул и более амбициозный проект «Свет суперзвезды»(с англ. “Super star light”). В рамках проекта он предложил построить пилотируемый звездолет с большим зеркальным парусом из алюминия, который будет разгоняться станциями-излучателями, размещенными на орбите Меркурия. Станции-излучатели используют мощный солнечный поток для генерации когерентного лазерного света, который будет соединен в один монохромный лазерный луч и послан к кораблю через фокусирующую линзу диаметром 1000 км, которая расположится на орбите между Сатурном и Ураном. Сам зеркальный парус состоит из трех секций: внутренний парус полезной нагрузки размером 100 км в диаметре; он окружен внутренним кольцом-парусом 230 км в диметре; тот в свою очередь окружен третьим, тоже кольцеобразным, парусом 1000 км в диаметре. Общая масса всей конструкции – 80 тыс. т, которая включает 3 тыс. т полезной нагрузки. Вся эта конструкция разгоняется с ускорением 0,3 g лучом с общей мощностью 43 тыс. тераватт. При таком ускорении корабль достигнет половины скорости света в течение полутора лет. Находясь на расстоянии 0,4 светового года от цели путешествия, внешний кольцевой парус должен быть отделен от двух внутренних частей. Лазерный свет из Солнечной системы отразится от внешнего кольцевого паруса, который будет работать теперь как переотражающее зеркало. Отраженный свет замедлит две внутренние части до приемлемой скорости при входе в чужую звездную систему. После того как космонавты изучат ее, малый кольцевой парус отделится от паруса полезной нагрузки и нужным образом сориентируется по отношению к оставшейся внутренней части. Со стороны
Солнечной системы поступит лазерный луч, отразится от кольцевого паруса на орбите чужой звезды и сконцентрируется на парус полезной нагрузки. Эта световая энергия разгонит внутренний круглый парус в направлении Земли. Как только парус с полезной нагрузкой приблизится к Солнечной системе, лазерные станции-излучатели включатся снова, чтобы на этот раз замедлить корабль вблизи от дома.
Такая схема выглядит очень эффектной и реалистичной даже с учетом ее высокой стоимости, однако имеются два фактора, которые препятствуют реализации проекта. Первый фактор – межзвездная пыль, которая при релятивистских скоростях становится опасным разрушителем. Расчеты показывают, что даже при скорости 0,1 световой межзвездная пыль своими микроударами будет «стирать» 90 см титановой брони за световой год. При скорости 0,5 световой, которую собирается развить Роберт Форвард, будет «стираться» 28 метров титановой брони за пройденный год. То есть защита корабля должна быть огромна и массивна; понадобятся десятки тысяч тонн, которые просто «сожрут» то преимущество, которое дает зеркальный парус. И второй фактор – природная кривизна пространства не позволит поддерживать ориентацию лазерного луча с нужной точностью на удалении в несколько световых лет, посему возвращение экспедиции становится проблематичным.
В 1994 году астрофизик и писатель-фантаст Джеффри Лэндис попытался обойти эти факторы, предложив разгонять с помощью лазера не парус, а корабль с панелями из фотоэлементов, которые собирают энергию луча и используют ее в электрора-кетном движителе. Однако детальное изучение его идеи показало, что выигрыш будет незначительным, а расходы генерируемой энергии намного выше.
Получается, что решения нет, и звезды навсегда останутся недоступными? Оказывается, есть. И пятьдесят лет назад человечество было куда ближе к звездам, чем сегодня. Нужно лишь вспомнить хорошо забытое старое…
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
2009 — Лучшие песни Новая коллекция
2009 — Лучшие песни Новая коллекция Сборник 01. Невеста Полоза (4:31) 02. Дорога сна (3:09) 03. Ворожи (3:39) 04. Ветер (4:44) 05. Горец (3:22) 06. Двери Тамерлана (3:29) 07. Далеко (4:12) 08. Полнолуние (4:14) 09. Господин горных дорог (5:19) 10. Волкодав (5:00) 11. Лорд Грегори (2:16) 12. Ночная кобыла (4:03) 13. А
Глава 4. Коллекция одежды и all that jazz
Глава 4. Коллекция одежды и all that jazz В 2000 г. меня познакомили с модельером Макашовой. Я ничего не знала о ней и ее марке «Ширпотреб». Меня уговорили. Мы приехали в Сокольники — не самое модное фэшн?место в Москве. С порога меня поразили минималистичный дизайн магазина,
ВЕСЕННЯЯ КОЛЛЕКЦИЯ
ВЕСЕННЯЯ КОЛЛЕКЦИЯ Наконец установилась теплая погода, и девушки прогуливаются по улицам в весенних нарядах, красивые и гордые, уверенные, что никогда не состарятся. Террасы кафе и баров превращаются в дозорные башни. Вы знаете мою типично средиземноморскую страсть к
Пропавшая коллекция
Пропавшая коллекция Подавляющая часть советских граждан 1 января еще приходили в себя после новогодней ночи, а сотрудники таможенной службы аэропорта Шереметьево уже трудились не покладая рук. В тот день в их сети угодила крупная дичь: итальянский гражданин Лючиано де
Коллекция
Коллекция Мы с мамой поднимаемся по скрипучей лестнице загородного дома, на стенах которого развешаны многочисленные коллекции засохших бабочек. Владелец этих коллекций ведет нас в свой кабинет на втором этаже. Сутулый, постоянно кашляющий, с трубкой в зубах, он
Наталья Иванова.Коллекция Колобка.
Наталья Иванова.Коллекция Колобка. Дорога наша сделалась живописна.А.С. Пушкин. “Путешествие в Арзрумво время похода 1829 года”Сбились мы, что делать нам?А.С. Пушкин. “Бесы”Почему-то мы все время неспокойны, куда-то движемся, направляемся: то к коммунизму (“Верной дорогой
Коллекция смыслов
Коллекция смыслов Библиоман. Книжная дюжина Коллекция смыслов Юрий Кобрин. Постскриптум : Стихотворения, переводы. – Вильнюс: Благотворительный фонд поощрения русской культуры писателя Константина Воробьёва. – 458 с.: фото, 1200 экз. Избранные стихи и переводы с
Уникальная музыкальная коллекция
Уникальная музыкальная коллекция Уникальная музыкальная коллекция Наступила осень. Но она несёт с собой отнюдь не только уныние, но и очарование. Об этом писали классики-поэты, об этом звучит музыка классиков-композиторов. И когда, как не осенью, приятнее всего
Тит ШИРОКИЙ ЖЕСТ PRЕЗИДЕНТА (Бесценная коллекция старинных рисунков "переместилась" из России в Германию)
Тит ШИРОКИЙ ЖЕСТ PRЕЗИДЕНТА (Бесценная коллекция старинных рисунков "переместилась" из России в Германию) Помните, с каким трудом депутаты-патриоты пробивали Закон "О культурных ценностях, перемещенных в Союз ССР в результате Второй мировой войны и находящихся на
Коллекция мерзостей
Коллекция мерзостей Украинские СМИ (и телевидение в частности) достигли по части вранья и цинизма таких высот, что удивляться очередному рекорду уже как-то даже неловко. Своим эмоциональным отношением, выражением протеста вы как будто идёте на поводу у лжеца,
КОЛЛЕКЦИЯ, КОТОРУЮ МЫ ПОТЕРЯЕМ?
КОЛЛЕКЦИЯ, КОТОРУЮ МЫ ПОТЕРЯЕМ? 15 апреля 2003 0 16(491) Date: 15-04-2003 КОЛЛЕКЦИЯ, КОТОРУЮ МЫ ПОТЕРЯЕМ? На этой неделе главной темой, волнующей культурную общественность, по-прежнему остается судьба Бременской коллекции. В четверг, 10 апреля, в Комитете по культуре Государственной