ГЛУБИННЫЙ МИКРОСКОП

ГЛУБИННЫЙ МИКРОСКОП

Но как сломать печать на книге, в которой вместо листов ходячие волны и которая имеет несколько тысяч футов толщины?

М. Ф. Мори

После знакомства с плаваниями «Северянки» логичен вопрос как и когда можно использовать подводные суда в морских исследованиях? Какие новые открытия позволят они совершить?

Хочется заранее предостеречь всех поклонников исследовательских подлодок от преувеличения их роли. Сегодня эти лодки пока лишь дополняют грандиозную работу, выполняемую на морях и океанах надводными средствами. А что будет завтра? Задача состоит в том, чтобы определить четкие перспективы их развития и использования.

Итак, на что же способны исследовательские подводные лодки? По–видимому, на многое. Чтобы не потеряться в этом многом, попробуем опереться на прочитанный материал и рассмотрим пять основополагающих преимуществ подлодки как исследовательского судна.

Преимущество первое. Подводное судно позволяет безопасно доставить аппаратуру и исследователей на глубину вплотную к объекту наблюдений или приблизить к нему.

То есть подводная лодка — это не что иное} как подвижный глубоководный герметичный носитель. В пределах своих технических возможностей он может быть спилотирован на дно или в толику воды: под ледовый покров, в глубинный рассеивающий слой, в места со сложным рельефом дна. Ему подвластны места, не доступные водолазу или батисфере.

Исследователь получает идеальную возможность наблюдать сам, тут же делать измерения приборами. Многое, что было получено другими способами, теперь можно проверить лично. Благодаря этому традиционный метод исследования «наугад», то есть с помощью опускаемых на тросе приборов, получает громадное подспорье.

Присутствие под водой исследователя придает наблюдениям новое качество: высокую достоверность и быстрое получение результатов. Многие сомнения или догадки разрешаются на месте. Более того, человек тут же может принять решение повернуть подводную лодку, направить ее в другое место. Поэтому все измерения или сбор образцов можно делать селективными, то есть выборочными. Исследователь–подводник способен точно размещать и ориентировать под водой научную аппаратуру и контролировать ее работу. Например, если нужно взять пробу воды у самого дна, входное отверстие пробоотборника с помощью манипулятора можно нацелить так, что оно не коснется ила и не вызовет мути. Такую же операцию можно провести и с надводного корабля, а лодка снизу будет ее по акустическому телефону направлять и корректировать.

Морские геологи из американского института Скриппса, находясь на борту подлодки «Дениза», обнаружили у берегов Калифорнии неизвестное подводное течение. Под их наблюдением с подводного судна опустили измеритель скорости течения. Через иллюминатор исследователи имели возможность контролировать эту операцию. Они проследили, чтобы прибор не попал за какой?нибудь большой камень или в углубление, где показания оказались бы неверными. Так была точно измерена скорость, составившая около четверти узла.

Важно, что в руках исследователя не только носитель, способный перемещаться в трех измерениях. Лодка способна двигаться быстрее, медленнее, останавливаться (зависать на месте, на подводном якоре, на гайдропе, ложиться на грунт), дрейфовать в водной массе. Она позволяет возвращаться в прежнюю точку, отмеченную гидроакустическим или другим указателем, чтобы осмотреть тщательнее и определить, что и насколько изменилось.

И вот здесь, пожалуй, уместно привести слова заведующего кафедрой океанологии МГУ профессора А. Д. Добровольского по поводу практики океанологических наблюдений: «К сожалению, очень редко работы ведутся в соответствии с принципами прослеживания неожиданно обнаруженного явления; преобладает стремление выполнить заранее намеченный план — это свойственно не только американским исследованиям, но и нашим».

И действительно, планируя подводные наблюдения на «Северянке», мы обнаружили, что не в состоянии предсказывать что?либо наверняка Поэтому каждый рейс «Северянки», выполнявшийся по программе, был в то же время и научной разведкой.

В самом деле, как поступать, если что?то встретится вне программы? В условиях, предоставляемых подводной лодкой, исследователь может изменять содержание наблюдений, комбинацию и режим работы приборов. Вся система может быть тут же «запрограммирована» на изучение нового объекта. При этом для получения результатов возможны любые импровизации, неосуществимые при слепом погружении аппаратуры с надводного судна. Словом, подводная лодка позволяет перейти от пассивного сбора научной информации к постановке управляемою эксперимента

И еще один важный момент. Некоторые подводные приборы нуждаются в частой корректировке, другие — в периодической калибровке, настройке и даже в ремонте. Только человек, находящийся рядом, может среагировать на непредвиденные или необычные отклонения в показаниях приборов и принять решение на месте.

Таким образом, человек (исследователь) и машина (подлодка) выступают как единая система, позволяющая извлечь максимум информации из приборов и умения, способностей и знаний человека.

Важно еще, что результаты ценны и своим комплексным характером — ведь наблюдение за любым объектом может сопровождаться измерением разнообразных характеристик окружающей среды.

Преимущество второе. Подводное судно доставляет измерительную аппаратуру прямо к объекту, а это повышает точность измерений и уменьшает их трудоемкость.

В самом деле, ошибки в показаниях многих опускаемых с надводного судна приборов и устройств растут с глубиной.

С возрастанием измеряемой глубины падает точность эхолотов. Ошибка эхолотов увеличивается, кроме того, и в случае изрезанного или наклонного дна На ее величину также влияет и изменение плотности морской воды. Так, для глубины 1000 метров ошибка может составить 40 метров, то есть 4 процента измеряемой величины. Профиль дна на эхограмме обозначается неверно: глубины неточны, уменьшены углы наклона дна, сглажены неровности.

Правда, многие исследователи смирились с «пороками» эхолота, считая, что они перекрываются такими его качествами, как автоматическое действие и наглядность изображения результатов. А если поставить эхолот на подводной лодке? Погружаясь, она сокращает глубину, приближает приемо–излучающую систему эхолота к объекту, искажения в показаниях уменьшаются.

Приближать эхолот нужно еще и потому, что с возрастанием измеряемой глубины ослабляется эхо–сигнал. Он может ослабнуть настолько, что его нельзя будет уловить. В океане существует целая группа факторов, ослабляющих звуковую энергию. Она теряется при переходе сигнала через слой скачка плотности; ослабляющее влияние оказывают также и волнение моря, и насыщенность верхнего слоя воды пузырьками воздуха, примерно до глубины 50 метров, и, наконец, планктон, концентрирующийся главным образом тоже в верхних слоях воды до 300 метров.

Подводные лодки, движимые электроэнергией, имеют в отличие от надводных судов сравнительно небольшой уровень собственных шумов. Чем не идеальные условия для изучения в океане звуков различного происхождения?

И еще одно: установка приборов на наружной части подлодки освобождает от необходимости думать о надежности лебедок, тросов, кабелей, не потеряется ли проба при подъеме, не изменится ли ее качество, то есть о том, что обычно волнует на надводных судах.

А ведь и с подводной лодки можно опускать приборы на тросе еще глубже, за пределы ее погружения.

Свердруп описывал устройство шлюзового колодца «Наутилуса», предназначенного для этого. Опускать приборы с подлодки можно независимо от погоды.

Преимущество третье. Движущееся подводное судно позволяет делать непрерывные комплексные измерения в трехмерном пространстве. Как это понять?

Обычно надводное научно–исследовательское судно позволяет выполнить две гидрологические станции в сутки. Так называется остановка в океане для выполнения измерений. При этом невозможно опустить за борт сразу все многочисленные приборы — не хватит места на палубе, да и лебедок маловато. Кроме того, метод станций не позволяет составить точную картину об окружающем пространстве, то есть обладает пониженной информативностью. Другое дело подводная лодка. Ее можно направить любым курсом: вверх, вниз, вбок, вперед и при этом непрерывно измерять и регистрировать недоступные глазу физические и химические характеристики среды: температуру, соленость, электропроводность, радиоактивность и многое другое.

Для этого на лодку ставят разную аппаратуру. Но любой ее вид содержит источник питания, датчики и регистраторы. Представьте: лодка идет, приборы работают, и исследователь сразу же получает данные о распределении многих физических и химических полей в океане. Есть приборы, которые автоматически вычерчивают графики распространения таких полей. Разумеется, в пределах глубины погружения лодки и чувствительности приборов.

А если поставить на подлодку фильтр с ионитами, как это делают на надводных кораблях, то можно определять концентрацию растворенных в воде элементов (стронция, висмута, селена, меди, железа, алюминия, цинка, драгоценных металлов) не только на поверхности, но и на глубине. Интересно, что единственный непрерывный температурный профиль от поверхности до самой большой в океанах глубины 10 919 метров был получен в 1960 году с помощью исследовательской подводной лодки «Триест».

Совершив посадку на грунт или став на подводный якорь, подводное судно можно использовать и как многосуточную станцию, иначе говоря, как подводную обсерваторию. Тогда можно, например, измерять элементы внутренних волн[14], период которых в большинстве случаев определяется часами, а иногда даже днями.

Преимущество четвертое. Подводное судно позволяет получать информацию, которая недоступна для других средств, а также дает возможность применить новые методы для получения известных данных.

Если сопоставишь подводные фотоснимки с увиденным в иллюминатор подводной лодки, то сравнение будет не в пользу фотоаппарата. Оказывается, человеческий глаз лучше разбирается в деталях и в цвете. Часто некоторые мелкие морские организмы, легко опознаваемые через иллюминатор подлодки, были неразличимы на фотопленке. Но фотографировать нужно. И лучше это делать с подлодки, чем опускать фотоаппарат на тросе, так как исследователь сам способен выбрать объект съемки, определить освещенность, установить фокусное расстояние. То же и с киносъемкой. Убедительное этому доказательство — кинокадры, снятые на недоступных водолазам глубинах с подводных лодок «Северянка» и «Дениза».

Хуже, чем глаз, различает предметы и передающая телевизионная трубка. Но все?таки поворотная телевизионная камера, если ее установить на подлодке, может увеличить поле и дальность зрения наблюдателя, ограниченное иллюминаторами. Ведь существуют же подводные лодки, где конструкторы вместо иллюминаторов предусмотрели только телевизионные «окна» в подводный мир.

Немало придонных живых существ благодаря окраске и форме так могут слиться с фоном, что нет никакой возможности их обнаружить, не заставив их каким?то образом сдвинуться с места. В апреле 1959 года в Териберской губе мы именно таким образом обнаружили камбалу и крабов, когда в поисках промысловой рыбы в районе Мурманского побережья несколько раз садились на грунт. Однажды, как только осело облако частиц, вызванное прикосновением лодки к грунту, наблюдавшие в иллюминатор обратили внимание, как во многих местах неподвижное до этого дно «ожило». С него медленно поднимались имеющие такую же, как и грунт, окраску, похожие на лепешки камбалы и, энергично двигая хвостами, устремлялись под корпус «Северянки». Невозможно было заметить и крабов до того момента, пока и они не начали ползти под лодку.

Интересный факт приводят американские исследователи, работавшие у Калифорнийского побережья. Бурное развитие фитопланктона в этих водах заметно ослабляет проникновение солнечного света, и уже на 180 метрах его уровень может быть ниже порога чувствительности человеческого глаза

В этой тускло–зеленой от планктона воде обитает множество совершенно прозрачных живых организмов. Ни на фото-, ни на кинопленку заснять их практически не удается, а между тем через иллюминаторы эти живые существа наблюдаются легко.

Если опуститься глубже, в сумеречную зону, то там только наблюдатель способен различить цвет биолюминисцентных вспышек[15], оценить их продолжительность, интенсивность, удаленность, прикинуть объем концентрации и увидеть, кто же испускает свет. Приборы здесь, пожалуй, пока не справятся. Когда сумерки переходят в темноту, надо включать искусственное освещение. Но даже в прозрачной воде, где можно осветить большие участки дна, фотосъемка бывает затруднена или попросту невозможна. Дело в том, что морское дно — плохой отражатель света. А это означает, что изображение будет, как говорят фотографы, вялым Подсчитано, что суммарная площадь морского дна, сфотографированного к сегодняшнему дню при помощи дистанционных камер с надводного корабля, гораздо меньше той, которую можно осмотреть и снять на кинопленку за одно погружение движущейся подводной лодки.

Уже говорилось о том, что определять распространение и концентрацию планктона традиционными методами можно лишь приблизительно. Эти мелкие и мельчайшие живые существа часто сосредоточиваются на границе слоев воды с разной плотностью. Обитатели средних глубин дрейфуют хаотично, ориентируя тело произвольно, вне зависимости от течения и влияния силы тяжести. Увидеть это можно из подводной лодки.

Из «Северянки» мы видели, что планктон в море распределяется пятнами. Как же определять его количество и состав? Единственным выходом представляется непрерывное измерение распространения планктона в пространстве по изменению освещенности с помощью фотометра с движущегося подводного судна. А качественный состав можно будет определять на глаз через иллюминатор или беря пробы воды. То есть создается уникальнейшая возможность зондирования биологического параметра.

Все это можно будет делать и подо льдом. Интересно мнение X. Свердрупа, высказанное еще в 30–х годах, о том, что условия для океанографических работ в арктических морях много благоприятнее на подводной лодке, нежели на обыкновенном судне. По–видимому, это мнение укрепилось после того, как норвежскому исследователю все?таки привелось заглянуть под воду. Это случилось, когда удалось затолкнуть под лед нос «Наутилуса». Нескольких минут, проведенных таким образом подо льдом, оказалось достаточно, чтобы X. Свердруп мог заключить: «Я был поражен, как много света проникало к нам не только сквозь воду, но и сквозь лед. Над нами вздымался лед в 3 м. толщины, и все?таки мы могли видеть на расстоянии 20—30 м. от нижнего глазка». Это впечатления. А вот вывод: «Самый лед был настолько прозрачен, что я положительно уверен в том, что подводная лодка не пойдет в темноте, если мы когда?нибудь доживем до плавания подо льдом на подводной лодке».

Теперь два слова о взятии проб внутрь лодки. В шлюзовой камере их можно сохранить и анализировать под давлением, равным забортному. Снижение давления до атмосферного может привести к неверным результатам. Так, во время эксперимента с советским пневматическим подводным домом «Спрут» определялось содержание кислорода в воде. В пробе, обработанной на берегу, оно составляло 4,7—5,2 мл/л, а в анализе, выполненном в подводном доме (то есть под давлением), — 5,7—6,5 мл/л.

Существует мнение, что науке до сих пор известно не более 10 процентов бентических[16] животных, главным образом относительно мелководных. До остальных 90 процентов пока еще не добрались. И опять, чтобы решить эту проблему, мы с надеждой смотрим на подводное судно.

На дне непочатый край работы. Необходимо, в частности, исследовать и сообщества животных и растений, и микроформы подводного рельефа, нефиксируемые эхолотами, и состав грунтов. Интересно, что по ориентации донных организмов можно определять направление и скорость течений.

Кстати, исторические свидетельства относительно господствовавших в свое время течений и других условий среды были зарегистрированы по ориентации остатков отмерших организмов, имеющих скелет или жесткую структуру, например, таких, как живущий колониями веерный коралл.

К микроформам подводного рельефа относится, в частности, рябь, возникающая на песчаном грунте. Эти волнообразные отметки, оставляемые движением придонных масс воды, — выразительная характеристика силы и направлений господствующих течений.

Удивительно, что знаки ряби встречаются на глубинах гораздо больших, чем это можно было бы объяснить, опираясь на известные данные. Например, такие знаки с одинаковой длиной волны около 5,2 метра и амплитудой 1,2 метра были обнаружены на большом пространстве через иллюминаторы исследовательской подводной лодки в Средиземном море к югу от острова Капри на глубине 3264 метра. До этих наблюдений считалось, что глубинные воды в Средиземном море очень спокойны. И как бы в подтверждение, что это не так, подводная лодка «Триест» в этом районе попала в водоворот и была повернута на 180 градусов вокруг вертикальной оси.

Микроформы рельефа могут также создаваться и внутренними волнами, возникающими в толще воды и не проявляющимися на поверхности моря.

Пожалуй, именно с подводной лодки удобнее всего наблюдать так называемые мутьевые течения. Они встречаются в придонных слоях морских вод близ устьев рек и на некоторых крутых участках дна. Это потоки воды, сильно насыщенной взвешенными твердыми частицами и представляющей собой суспензию. Такой поток имеет высокую плотность и подобно наждачной бумаге способен эродировать дно или даже вызывать подводное оползание донных осадков. Вообще подводные оползни, даже происходящие по другим причинам, представляют значительный интерес для исследований и могут быть вызваны экспериментальным путем. Наши плавания на подлодке «Южанка», о которых я расскажу ниже, показали, что легкого касания корпуса лодки достаточно, чтобы толща накапливающегося осадка пришла в движение и подводная лавина устремилась вниз по склону.

При посадке на грунт создаются возможности для точного измерения оптическим путем незначительных придонных течений, скорость которых меньше, чем порог чувствительности вертушек или других электромеханических приборов. Нужно лишь пронаблюдать за любой взвешенной частицей, дрейфующей в освещенном объеме, и измерить скорость дрейфа.

С подводной лодки, совершившей посадку на грунт, удалось измерить скорость звука в донных осадках на значительных глубинах. На мелководье такие замеры выполняются легкими водолазами. Таким же образом, вероятно, можно измерить «тепловое дыхание Земли» и получить характеристики слабых геотермических потоков.

Новые возможности, которые нельзя реализовать с надводного судна, открывает установка на подлодке эхолотов «вверх ногами», то есть с вибраторами, обращенными вверх. Например, такой способ позволил нам, когда мы проходили на «Северянке» сквозь скопление атлантической сельди, определять его плотность, зондируя пространство над лодкой и под ней. На «Северянке» верхним эхолотом определяли высоту и период волнения, бушевавшего где?то высоко над головой. Нам, в сущности, удалось автоматизировать процесс наблюдения над волнами — «валами морскими». Так их назвал в начале XIX века известный мореплаватель командир брига «Рюрик» лейтенант O. K. Коцебу, которому также принадлежат слова: «Теория сего движения еще весьма несовершенна и самый предмет столь скоротечен и мало удобен к объятию».

Обращенный вверх эхолот, доставленный подлодкой под лед, позволяет также измерять форму, толщину и плотность ледового покрова.

И наконец, оптика моря. Нужная направленность подводных оптических приборов — первое условие для точных измерений. На надводном судне, которое сносится ветром во время дрейфа, выполнить это условие не всегда позволяет наклонное (не вертикальное) положение кабель–троса. При стоянке на якоре кабель–трос отклоняется течением.

Другая помеха подводным оптическим измерениям — это прямой солнечный свет, отражаемый бортами надводного судна, или же затенение от его корпуса. Ошибки наблюдений в этом случае будут существенными.

И опять мы скажем, что выход здесь — в использовании подводной лодки, которая способна стать основным средством для оптических исследований. Приборы устанавливаются прямо на корпусе подлодки. Уже первые разовые наблюдения из «Триеста» показали, что предел восприятия человеком дневного света находится на глубине между 600 и 700 метрами (по расчетам — на 800 метрах). Систематических же работ по установлению предела глубины, ниже которого яркость становится слабее чувствительности глаза, для разных морей и океанов до сих пор не проводилось. Важный вклад в практику измерений и теорию дальности видимости под водой внес исследователь О. А. Соколов, использовавший для этой цели «Северянку». С помощью «ныряющею блюдца» французские исследователи измеряли у берегов Корсики яркость погружаемой на различную глубину лампы с горизонтальным удалением от нее 360 метров. Как оказалось, человеческий глаз в условиях эксперимента смог различать лампу в 500 ватт на расстоянии до 275 метров.

Но это лишь часть задач из области оптики, решение которых под силу подводной лодке.

Преимущество пятое. Оторвавшись от поверхности и погрузившись на глубину или совершив посадку на грунт, подводная лодка превращается в относительно стабилизированное основание. А это значит, что и аппаратура и наблюдатели могут работать и получать результаты при любом состоянии моря.

Уже при волнении 3—4 балла работы со многими опускаемыми за борт приборами, в том числе и с малыми подлодками, на надводных научно–исследовательских судах прекращаются.

Американский исследователь Уильям Кроми указывает: «Порою на то, чтобы спустить якоря, провести измерения и сняться с якоря, уходило четыре дня». (Кроми имеет здесь в виду работу на глубине до 3,5 мили.) А свежая и штормовая погода, на которую в Мировом океане приходится около 20 процентов года, означает для надводных экспедиционных судов мертвый сезон. Если не считать, конечно, попутных наблюдений, которые удается провести в это время. Качка заставляет корпус судна вибрировать, отрицательно влияет на эксплуатационный режим приборов, на самочувствие и работоспособность людей. Если прибор на качке опущен за борт, то он вносит возмущения в окружающую среду. Этот фактор, конечно, отрицательно влияет на достоверность показаний. Но он, к сожалению, пока никак не контролируется.

Даже огромные современные научные лайнеры, оборудованные успокоителями качки, испытывают во время шторма неприятные минуты. Что же тогда говорить об исследовательских судах среднего и малого тоннажа?

Из физики моря известно, что с увеличением глубины погружения резко уменьшаются радиусы орбит вращения частиц воды. То есть силы, вызывающие качку, уменьшаются. На глубинах, составляющих примерно половину длины волны, волновое движение ослабляется настолько, что им практически можно пренебречь. Достаточно подводному судну во время шторма погрузиться на несколько десятков метров, чтобы попасть в обстановку относительного покоя. Я пишу «относительного» потому, что поверхностное волнение, как известно, может быть источником особого вида внутренних волн, влияние которых на подводные операции изучено еще недостаточно. Сейчас трудно анализировать причину явлений, с которыми мы встретились в Норвежском море и от которых нас отделяет много лет. Но, может быть, именно вызванные штормом внутренние волны заставляли «Северянку», укрывшуюся от непогоды на глубине 50 метров, время от времени накреняться то на один, то на другой борт до 5 градусов. Но это исключение. Обычно пребывание на глубине — это плавание в спокойной во всех отношениях обстановке, и подводники предпочитают погружение качке на поверхности. Погрузиться во время шторма и долго находиться под верхним штормовым слоем моря могут лишь автономные большие подводные лодки.

Еще в 30–х годах нашего столетия военные подводные лодки стали использоваться в качестве стабилизированных платформ для гравиметрических измерений, то есть определения силы тяжести в море. В основу намерений заложен принцип маятника, требующий спокойной обстановки. Таким способом выполнено не менее 6 тысяч измерений. Некоторые из них были сделаны по время посадки на дно, как, например, с исследовательской лодки «Триест». Эта лодка выполнила серию наблюдений на значительных глубинах впервые, а также проверила некоторые предшествующие наблюдения.

Итак, перечислены и более или менее детально рассмотрены основные доводы в пользу применения для исследовательских работ подводных судов. К сожалению, их справедливость разделяется пока не всеми океанологами. Правда, скептиков со временем становится меньше. Но интересно то, что среди несогласных нет ни одною, кто или в подводной лодке, или в гидростате, или просто с аквалангом опускался бы под воду.

Те же, кому удалось поработать и на палубе надводного исследовательского судна, и в тесном отсеке субмарины, всегда высказываются в пользу более широкого применения подводных лодок для изучения океана.

Говорят, что достаточно одного погружения, чтобы превратить обычного, то есть надводного, океанолога в подводного. Именно это и случилось, например, с моими коллегами по «Северянке» гидрооптиком О. А. Соколовым, ихтиологами Д. В. Радаковым и Б. С. Соловьевым, морским геологом Д. Е. Гершановичем и многими другими, «прикоснувшимися» к подводному миру и безоговорочно признавшими научную силу глубинного судна.

Конечно, полная реализация всех названных возможностей в каждом конкретном случае будет зависеть от технических характеристик и научного оборудования отдельной реальной подводной лодки. Сегодня еще не существует подводного корабля, который бы по своим качествам полностью удовлетворял всем пяти выдвинутым положениям.

Впрочем, верно и другое: по существу, нет и надводного судна, которое удовлетворяло хотя бы одному из них. Создание в будущем такой универсальной лодки, которая «может все», — это не фантастика, а разрешимая техническая проблема, хотя и достаточно сложная. Другой вопрос — есть ли необходимость в таком многоцелевом средстве. А может быть, правильнее создавать лодки, специализированные для выполнения узкого круга научных задач? Сделать это легче, дешевле, и поэтому второй путь представляется сейчас более правильным.

И при всем этом нужно помнить, что пока подводные лодки, способные погружаться на километровые глубины, не могут быстро и долго плавать в горизонтальном направлении. И наоборот, для способных к длительному подводному плаванию лодок большие глубины недостижимы. Большинство же исследовательских лодок не может ни глубоко погружаться, ни долго и быстро плавать. Кроме того, их работа в море связана с целым рядом ограничений, влияющих на эффективность использования. Поговорим об эффективности.

Создание исследовательских подводных лодок без учета океанологических факторов в районе их будущего действия приводит к неудаче. Деньги оказываются выброшенными на ветер, и, самое главное, пропадает вера в подводную лодку. Некоторые конструкторы забывают, что важна не сама подводная лодка с теми или иными техническими характеристиками, а то, какой эффект позволяют получить эти характеристики в районе плавания. Английским инженерам пришлось убедиться в этом на горьком опыте. В 1967 году ими была построена малая исследовательская подводная лодка «СЭРВ», кстати, единственная в то время в Англии. Лодка имела рабочую глубину 300 метров, экономическую скорость хода 0,5 узла, максимальную — всего 2,5 узла и предназначалась для работы в прилегающих водах, изобилующих сильными течениями. Нет ничего удивительного, что она уже в 1969 году была выведена из эксплуатации как недееспособная. Лодка стоила 40 тысяч фунтов стерлингов, а обеспечивающая плавбаза, заказанная в США, — 2,5 миллиона долларов.

О более ранней неудачной попытке применить подлодку для научных наблюдений мы уже упоминали, говоря о плавании «Наутилуса» в 1931 году. Идея плавания принадлежала Вильямуру Стефансону, который почему?то посчитал, что в Ледовитом океане летом на подводной лодке можно пройти куда угодно и произвести ценные наблюдения. Основанное на незнании технических возможностей подлодки тех лет заблуждение, помноженное на неукротимую энергию загоревшегося идеей организатора экспедиции Уилкинса, привело, как известно, к авантюре.

Рассмотренные примеры не исчерпывают, конечно, всей проблемы эффективного применения подлодок для исследовательских целей. Показателей может быть гораздо больше — и не менее существенных. Очень важно, например, учитывать технические возможности системы «подлодка — плавбаза» и географические особенности района.

Например, можно ввести показатель, который связан с удаленностью точки погружения лодки от места якорной стоянки (или дрейфа) плавбазы. Обычно ночью плавбаза с подлодкой на борту отстаивается на якоре там, где глубина позволяет это сделать. Утром же плавбаза транспортирует лодку к месту работы. Если экспедиция проходит в открытом море, где не всегда можно найти якорную стоянку, плавбаза ночью может лечь в дрейф.

Потеря времени на непроизводительные переходы плавбазы налагается на рабочее время. Так, для подводной лодки «Элвин» и ее судна–носителя «Лулу», имеющего скорость 6 узлов, потеря времени на переходы составила 20 процентов от числа пригодных для работы дней.

И наконец, еще одна группа — это показатели эффективности технического, а иногда и организационного характера.

Сюда можно ввести показатель эффективности по энергоресурсам. Он связывает время, которое лодка может идти под водой с заданной скоростью, то есть автономность малой подлодки по движению, с минимальным временем, необходимым для выполнения программы одного погружения.

Бюро промышленного рыболовства США арендовало канадскую исследовательскую подлодку «Пайсиз» для рекогносцировочных погружений у Пьюджет Саунд (западное побережье США). Одной из конкретных задач были подводные наблюдения за движением рыболовного трала в толще воды. Но провести их не удалось. Как показывает опыт «Северянки», здесь требовалось сложное и длительное маневрирование (повороты за постоянно ускользающим из поля зрения тралом, частое изменение хода при отставании или опережении), на которое «Пайсиз» оказалась неспособна. Застой картушки магнитного компаса во время поворотов не позволял контролировать правильность курса, а незначительная по емкости аккумуляторная батарея быстро разряжалась. Наш собственный опыт дает основание утверждать, что для подробного наблюдения и киносъемки трала с «Северянки» на одно погружение требовались не минуты или десятки минут, а долгие напряженные часы.

Итак, на деятельность исследовательских подводных лодок влияют различные факторы, и мы попытались в какой?то мере проанализировать это влияние. Речь шла об элементах, воздействующих на лодку. Но, оказывается, и сама лодка вносит возмущения в окружающую ее среду. Природа некоторых из них изучена достаточно хорошо, другие требуют детального исследования (возможно, опять?таки с помощью подводных лодок). Мы не склонны преувеличивать или преуменьшать значение подводной лодки как возмущающего фактора. В каждом отдельном случае нужно подходить дифференцированно. Но это ее свойство может снизить эффективность применения во многих направлениях исследований. Поэтому остановимся на этом вопросе подробнее.

Исследовательское подводное судно представляет собой сложную систему. Ее деятельность сопровождается возникновением в окружающей среде целого ряда физических и химических полей или искажением существующих природных полей.

Я сознательно заостряю этот вопрос И не только потому, что он изучен недостаточно, но и потому, что создатели исследовательских подводных лодок подчас вовсе и не задумываются над тем, какую дисгармонию может внести их детище в сбалансированное природой равновесие мира глубин.

Закономерны вопросы: на какое же расстояние от подводной лодки распространяется то или иное поле? Как они (поля) воспринимаются подводными объектами, особенно живыми, и как объекты реагируют на это?

Частичный ответ на первый вопрос дает таблица 3, составленная на основании анализа отечественных и иностранных данных.

Дальность распространения поля определялась наиболее чувствительными современными приборами. Может быть, в различных случаях рецепторы, то есть воспринимающие органы, морских животных улавливают возмущения внешней среды на больших расстояниях, а может быть, их степень восприятия ниже, чем у аппаратуры, созданной человеком. Все зависит от того, какой объект воспринимает, когда и в каких условиях.

Будем считать, что подводная лодка, перемещаясь, действует на окружающую среду всем комплексом перечисленных в таблице полей или искажает природные, например, проникающие в воду космические излучения, а находясь на грунте, — какой?то частью этого комплекса. Хорошо бы знать, как это действие отражается на исследовании живой и неживой природы под водой. Еще лучше было бы совместить зону возмущений среды лодкой с зоной восприятия этих возмущений объектом изучения. Тогда можно было бы говорить о сфере применимости и об эффективности применения данной подводной лодки для какого?то определенного вида исследований. Несмотря на то что отечественные и зарубежные исследователи уделили немало внимания изучению зрительного, слухового и других видов восприятия у морских животных, этот вопрос можно считать только поставленным

Фирма «Перри Кэбмарин», специализирующаяся на постройке малых подводных лодок, утверждает, что присутствие лодки не пугает рыб и других обитателей рифов. И в доказательство приводит снимок барракуды, спокойно плавающей рядом с одной из лодок. А вот Кусто и Эджертон сообщили, что в Средиземном море и в Индийском океане при опускании в воду кинокамер рыбы и другие морские животные пускались наутек. Кто прав? Видимо, обе стороны, поскольку утверждения каждой основаны на фактах, но эти факты не подкреплены другими. В частности, ни в первом, ни во втором случае не говорится

о сезоне, времени дня, состоянии животного и окружающей среды. Может быть, эта же самая барракуда в другое время года или даже суток не подпустит к себе подводную лодку и на «пушечный выстрел».

16 декабря I960 года наша «Северянка» двигалась в полной темноте в протянувшемся на две с половиной мили скоплении сельди со скоростью 2 узла. Эхолоты верхнего и нижнего обнаружения регистрировали рыбу. Когда включили прожектора, в первый момент показалось, что сельдь быстро уплывает от лодки. Спустя 15—20 секунд в передней части лодки отчетливо стали слышны удары сельди о корпус, а в лучах прожекторов появилась масса быстро и беспорядочно движущейся рыбы. Через 30—90 секунд рыба исчезала и даже не регистрировалась эхолотами. Но все повторялось, когда мы выключали прожектора и входили снова в косяк.

На борту лодки в этом рейсе было установлено 6 глубоководных светильников с зеркальными лампами мощностью по 500 ватт, с углами рассеяния светового пучка в 60—70 градусов и силой света в осевом направлении около 5000 свечей. Четыре из них располагались у бортовых иллюминаторов, пятый — у верхнего иллюминатора и был направлен в зенит, шестой закреплен в носовой части и ориентирован вверх под углом 45 градусов к вертикали.

Почему же все?таки боящаяся света сельдь вначале бросалась к лодке? Сразу же возникала мысль, что сельдь принимает свет лодки за излучение светящихся форм планктона и устремляется к пище. Но это предположение не подтвердилось результатами наблюдений.

Если бы свет, излучаемый прожекторами, был похож на сияние светящегося планктона, то это можно было бы допустить.

Может быть, внезапное включение светильников вызывало у рыб, застигнутых в освещенной зоне, подобие шока? И ослепленная сельдь в поисках выхода бросалась в образовавшееся свободное пространство и попадала в поле зрения наблюдателей?

После «разрядки» уплотнения отдаленные сельди, замечая приближение света, уходили в сторону. И пока «Северянка» двигалась с включенными прожекторами, эхолоты показывали, что рыбы поблизости нет.

Безусловно, такое объяснение нуждается в дополнительной проверке. Но одно для нас тогда было бесспорным: искусственный свет отпугивал сельдь. Это подтверждается и тем, что появлявшиеся в освещенной зоне рыбы не скапливались у самих светильников, а беспорядочно ударялись о корпус подводной лодки, леерные стойки и тросы. Было видно, как на стекло верхнего иллюминатора падал дождь чешуи.

Сельдь обитает в верхней, доступной естественному свету зоне океана и имеет развитые органы зрения. А как реагируют на свет подводного судна глубоководные рыбы? Биб за время погружений на батисфере успел познакомиться с 115 747 экземплярами глубоководных рыб. Наблюдая без искусственного света, он пришел к выводу, что 66 процентов этих рыб имеют органы свечения. Если это так, то почему бы этим рыбам не иметь органов, воспринимающих свет?

Ведь уже известно, что рыбы, издающие звуки, хорошо их воспринимают; что так называемых неэлектрических рыб нет совсем, поскольку все рыбы в большей или меньшей степени способны генерировать и воспринимать электрические сигналы; что суммарный электрический сигнал стаи рыб многократно больше сигнала единичной особи и т. д.

Поэтому трудно предугадать, а тем более планировать, какие результаты даст электросвет при наблюдении за рыбами. Не всегда помогает и отсутствие света. Несколько раз исследователи пытались с помощью глубоководной лодки «Триест» посмотреть, из каких же организмов формируется так называемый глубинный рассеивающий слой, присутствие которого отчетливо фиксируется эхолотами. Однако надежды на то, что погружения «Триеста» помогут раскрыть эту тайну, не оправдались: на глубинах, где обычно происходит рассеивание звука, наблюдатели не обнаружили особых скоплений животных. Уильям Кроми, например, считает, что это произошло потому, что «чудище» величиной с кита неизбежно возмущает воду в своем свободном падении и, очевидно, разгоняет все живые существа. И Пикар говорит, что он никогда не мог разглядеть рыб во время быстрого спуска. Даже при медленном спуске «Триеста» редко приходилось наблюдать живые формы, кроме планктона или относительно примитивных видов.

Но и эти «примитивные» виды могут уходить от опасности, причем с изрядной скоростью. Американский конструктор подводной фотоаппаратуры Эджертон произвел любопытные вычисления. Зная длительность светового импульса осветительной лампы–вспышки (около 0,003 секунды) и расстояние до фотографируемого объекта (от 2,5 до 10 сантиметров), он по величине трасс на фотопленке, напоминающих хвосты комет, подсчитал скорость движения этих организмов. Она составила от 0,3 до 3,0 метра в секунду. Оказалось, что даже самые крошечные существа в океане были способны ускользать от нарушившего их покой объекта и, подобно юрким рыбам, держаться от него в стороне.

Рыбы имеют боковую линию, настолько чувствительную, что могут ощущать колебания воды, возникающие при движении, питании и даже дыхании других существ.

Сотрудники Полярного научно–исследовательского института рыбного хозяйства и океанографии много раз спускались под воду в гидростате «Север-1». При погружении гидростата в стаю трески, находящуюся в толще воды, рыбы уходят глубже. Войти в верхнюю часть стаи и видеть треску удавалось лишь на короткое время только при быстром погружении. Исследователи утверждают, что стайное поведение отличается от поведения одиночной рыбы повышенной чуткостью восприятия, быстротой реакции и маневренностью. Наблюдения «Северянки» и другие данные подтвердили это утверждение.

Но неужели подводная лодка, обладая высокой скоростью, все?таки не может догнать и увидеть уходящих от нее рыб или китов? Да, неплохо было бы обладать такой возможностью. Но, во–первых, увеличение скорости лодки будет сопровождаться возрастанием ее комплексного физического поля. А во–вторых, лучшие пловцы среди рыб и китов способны двигаться с недостижимой для исследовательских лодок стремительностью. Максимально зафиксированная скорость желтоперого тунца на рывке составляет 16 метров в секунду (около 32 узлов). Американцы, сопоставляя скорость своей подводной лодки «Алюминаут» со скоростью кашалотов и синих китов, пришли к заключению, что преимущество остается за этими животными. Любое из них может уйти от лодки, наибольшая скорость которой не превышает 3,8 узла. Обычная же скорость кашалота около 4 узлов, но в случае опасности он сможет дать и 12 узлов.

Средняя скорость синего кита 10 узлов, при необходимости он может развивать 22 узла.

Как это ни огорчительно, но надо признать, что наблюдатели в подводной лодке никогда не смогут подойти близко и встретиться «лицом к лицу» со многими представителями морской фауны, разве только на экранах гидроакустических приборов. Конечно, не исключено, что обитатели моря сами почему?либо захотят познакомиться с подлодками поближе.

Лодка под водой может светиться и без прожекторов. Вот что удалось выяснить по этому поводу через иллюминаторы «Северянки» во время ее восьмой экспедиции. Лодка находилась на грунте неподвижно. Выключались все светильники и освещение в отсеках. Там, где находился конец стрелы[17] с выключенным светильником, можно было наблюдать очень редкие вспышки с интервалом в 5—10 минут. Стоило лодке начать всплывать, рефлектор светильника и конец стрелы озарялись многочисленными вспышками. Их производили гребневики, медузы и другие более мелкие формы планктона. С увеличением хода лодки свечение усиливалось. Оно сопровождало лодку от грунта до поверхности (это происходило в Мотовском заливе Баренцева моря). Прямо у борта лодки светились организмы, вспышки которых вызывались завихрениями воды либо ударами о борт судна. И в открытом море через верхний иллюминатор можно было видеть прямо?таки движущееся «звездное небо» — так много гребневиков светилось, проносясь над палубой лодки. Тросы, которые поддерживали и ориентировали стрелу, а также натянутый вдоль палубы леер, антенны и другие выступающие части палубы вызывали завихрения. Поэтому свечение организмов перед верхним иллюминатором было интенсивнее, чем перед бортовыми. Порой оно было настолько сильным, что вспышки у иллюминаторов наблюдались даже при включенных наружных светильниках.

Несомненно, что лодка на грунте, когда часть механизмов выключена, обладает меньшим спектром физических полей, чем на ходу. Но «засиживаться» ей нельзя. Долгое пребывание на одном месте может вызвать экологические нарушения в значительном радиусе. Как полагают биологи, применявшие подводный дом «Черномор» в 1968 году, зона влияния дома на животный мир лежала в пределах 20 метров. Чтобы этого не случилось, лодка, по–видимому, через какой?то промежуток времени должна менять место пребывания на грунте.

Проблема «взаимоотношения» подводного исследовательского аппарата со средой и объектом исследования очень сложна и интересна. Здесь она затронута лишь с одной целью — показать ее значимость при оценке эффективности действий исследовательской подводной лодки и необходимость дальнейшей разработки. Примеры брались главным образом из практики наблюдений за рыбами, хотя физическое поле лодки влияет не только на них. Причем степень влияния поля и его составляющих зависит не только от восприимчивости окружающей среды,, но и от характеристики самой подводной лодки.

Очевидно, обзор всех «за» и «против» применения подводных аппаратов для океанологических и других исследований будет не полным, если не коснуться самого главного критерия эффективности, который сводится в конечном счете к сопоставлению затрат с научной отдачей. Это важно сделать прежде всего потому; что и смысл книги} пожалуй,, в том, чтобы представить подводные суда как богатейший и еще, по сути дела, слабо затронутый резерв технических средств исследования Мирового океана, как весьма перспективное дополнение к надводным судам.

Этот критерий, по–видимому, должен выражаться дробным числом, в знаменатель которого выносятся затраты (например, суточные расходы), а в числитель — достигнутый научный эффект. Действительно, чем выше эффект и меньше затраты — тем выше и критерий и эффективность в целом. Поскольку назначением всякого исследовательского средства, в том числе и подводного, является получение научной информации, то результатом его суточной деятельности, то есть эффектом, должна быть какая?то сумма замеров (наблюдении). Но специфика подводных методов исследований состоит в том, что трудность получения информации возрастает с глубиной. Судите сами: исследовать дно на глубине 10 метров легче, чем на 10 километрах. Да и подлодка для такой глубины всего пока одна. Поэтому в числитель нужно добавить сомножитель, выражающий зависимость критерия эффективности от глубины. Он показывает, что ценность информации, полученной с глубины, будет выше и определяется особо.

Но такой критерий справедлив только для неподвижных исследовательских средств. Его можно применить к опущенному на тросе со стоящего на якоре судна прибору; гидростату (не дрейфующему с кораблем); к аппаратуре, устанавливаемой на дне или на якоре; к подводной лодке, совершившей посадку на грунт; даже к неподвижному водолазу–наблюдателю.

Но наблюдения в одной точке или станции не всегда позволяют составить нужную картину, то есть не обладают достаточной информативностью. Выход из этого — или умножение числа станций, или использование подвижных носителей аппаратуры и наблюдателей, к которым относятся исследовательские подводные лодки. Тогда в числитель критерия эффективности войдет еще один сомножитель — дальность подводного плавания.