Нарастание убывания

Нарастание убывания

Основной принцип «гауссовой кривой», позвольте напомнить, состоит в том, что большинство наблюдений относится к заурядности, к среднему; по мере того как вы отдаляетесь от средних величин, шансы отклонения падают все быстрее и быстрее (экспоненциально). Если вам нужна сжатая формулировка, вот она: резкий рост скорости падения шансов при удалении от центра, то есть от среднего. Чтобы это проиллюстрировать, я беру пример гауссовой величины, такой как рост, и немного упрощаю его, чтобы сделать более наглядным. Предположим, что средний рост (мужчин и женщин) 1 метр 67 сантиметров, или 5 футов 7 дюймов. Будем считать, что так называемая единица отклонения равна в данном случае го сантиметрам. Взглянем на ряд прибавок к 1 метру 67 сантиметрам и рассмотрим шансы того, что кто-то окажется столь высоким.

на 10 см выше среднего (т. е. выше 1 м 77 см, или 5 футов 10 дюймов): 1 из 6,3

на 20 см выше среднего (т. е. выше 1 м 87 см, или б футов 2 дюймов): 1 из 44

на 30 см выше среднего (т. е. выше 1 м 97 см, или б футов б дюймов): 1 из 740

на 40 см выше среднего (т. е. выше 2 м 07 см, или б футов 9 дюймов): 1 из 32 000

на 50 см выше среднего (т. е. выше 2 м 17 см, или 7 футов 1 дюйма): 1 из 3 500 000

на 60 см выше среднего (т. е. выше 2 м 27 см, или 7 футов 5 дюймов): 1 из 1 000 000 000

на 70 см выше среднего (т. е. выше 2 м 37 см, или 7 футов 9 дюймов): 1 из 780 000 000 000

на 80 см выше среднего (т.е. выше 2 м 47 см, или 8 футов 1 дюйма): 1 из 1 600 000 000 000 000

на 90 см выше среднего (т. е. выше 2 м 57 см, или 8 футов 5 дюймов): 1 из 8 900 000 000 000 000 000

на 100 см выше среднего (т. е. выше 2 м 67 см, или 8 футов 9 дюймов): 1 из 130 000 000 000 000 000 000 000

…и

на 110 см выше среднего (т.е. выше 2 м 77 см, или 9 футов 1 дюйма): 1 из 36 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000.

Думаю, не ошибусь, если скажу, что после 22 отклонений, означающих превышение среднего роста на 2 м 20 см, шансы достигают числа, имеющего в знаменателе так называемый «гугол» — единицу со ста нулями.

Цель этого списка — проиллюстрировать ускорение. Обратите внимание на разницу в шансах между* превышением среднего роста на 60 и на 70 сантиметров: всего 4 лишних дюйма снижают шансы с одного на миллиард до одного на 780 миллиардов! А теперь посмотрите на скачок между 70 и 80 сантиметрами: еще 4 дюйма, и шансы слетают с одного на 780 миллиардов до одного на 1,6 миллиона миллиардов![69]

Это стремительное убывание вероятности какого-либо явления и приводит к игнорированию аномалий. Только одна кривая может давать такое убывание — гауссиана (и ее не-масштабируемые родичи).

Данный текст является ознакомительным фрагментом.