Шахматы, предсказания и эвристика

Шахматы, предсказания и эвристика

В соответствии с теоремой Байеса предсказание представляет собой, по сути, тип деятельности по обработке информации: использование новых данных для тестирования гипотез об объективном мире с целью создать более истинные и более точные концепции о нем.

Шахматы можно считать неким аналогом предсказания. Игроки должны обрабатывать информацию о положении 32 фигур на доске и их возможные действия. Они используют эту информацию для разработки стратегий, позволяющих поставить своему оппоненту мат. Эти стратегии, в сущности, представляют собой различные гипотезы о том, как выиграть игру. Можно сказать, что любой человек, выигравший игру, имел лучшую гипотезу.

Шахматы обладают свойством детерминизма – в них отсутствует реальный элемент удачи. Однако теоретически это справедливо и в отношении погоды, как мы видели в главе 4. Наше знание обеих систем несовершенно. Что касается погоды, то в метеорологии значительная часть проблемы связана с тем, что у нас нет полных данных изначальных условий. Даже если мы очень хорошо представляем, по каким правилам работает погодная система, у нас нет полной информации о положении всех молекул, образующих облака, штормы и ураганы. Поэтому лучшее, что мы можем сделать, – это дать вероятностные прогнозы.

В шахматах известны все правила и имеется идеальный набор информации – количество шахматных фигур конечно, и они располагаются на доске в ясной последовательности. Однако игра все равно невероятно сложна для нас. Шахматы способны многое сказать о нашей способности обрабатывать информацию – и продемонстрировать нам некоторые лучшие стратегии принятия решений. Необходимость предсказания появляется не только потому, что мир сам по себе наполнен неопределенностью, но и потому, что его понимание находится за пределами наших способностей{615}.

Поэтому и компьютерные программы, и шахматисты допускают ряд упрощений, чтобы спрогнозировать исход игры. Мы можем называть эти упрощения «моделями», однако при изучении компьютерного программирования и процессов принятия решений чаще используется термин эвристика. Это слово происходит от того же греческого слова, что и слово «эврика»{616}. Эвристический подход к решению проблемы состоит в использовании эмпирических правил в ситуациях, когда детерминистическое решение проблемы находится вне наших практических способностей.

Эвристика – очень полезная вещь, однако она всегда приводит к возникновению искажений и слепых пятен{617}. Например, правило эвристики «Когда вы сталкиваетесь с опасным животным, то убегайте!» часто действительно представляет собой полезное руководство, но не в случаях, когда вы встречаетесь с медведем-гризли; своим движением вы можете привлечь его внимание, а затем он запросто может вас догнать (напротив, служба национальных парков рекомендует вам в случае встречи с медведем-гризли вести себя максимально тихо и спокойно и даже притворяться мертвым, если это необходимо{618}). Люди и компьютеры используют в процессе игры в шахматы разную эвристику. Игра друг против друга в таких случаях обычно сводится к тому, чтобы найти слепые пятна оппонента быстрее, чем он найдет ваши.

Данный текст является ознакомительным фрагментом.