Когда предвзятые прогнозы оказываются рациональными
Когда предвзятые прогнозы оказываются рациональными
Если вам действительно нужен экономический прогноз, то лучше всего обращаться к средним или обобщенным прогнозам, чем к прогнозам отдельных экономистов. Мое исследование обзоров профессиональных прогнозистов в сфере экономики SPF показало, что обобщенные прогнозы примерно на 20 % точнее, чем индивидуальные, предсказывают величину ВВП, на 10 % – уровень безработицы и на 30 % – уровень инфляции{434}. Эта особенность – групповые прогнозы переигрывают индивидуальные – проявлялась почти в любой области, где проводились подобные исследования.
И хотя идея о том, что обобщенные прогнозы оказываются лучше индивидуальных, может считаться важной с эмпирической точки зрения, порой она используется как отговорка, препятствующая улучшению прогнозов. Обобщенный прогноз создается из отдельных; и если они улучшаются, то улучшается и групповой результат. Более того, даже обобщенные экономические прогнозы оказываются достаточно плохими с точки зрения работы в реальном времени, так что в этом вопросе есть над чем работать.
Большинство экономистов высказывает свои суждения при создании прогноза с определенными условиями, а не делятся результатами статистической модели как таковой. С учетом того, насколько сильно данные забиты шумом, это имеет смысл. Исследование Стивена К. Макнесса, бывшего вице-президента Федерального резервного банка Бостона, показало, что корректировки методов статистических прогнозов, связанные с теми или иными суждениями, позволяют повысить точность прогнозов примерно на 15 %{435}. Идея о том, что статистическая модель будет способна «решить» проблему экономического прогнозирования, была довольно расплывчатой в 1970?е и 1980?е гг., когда компьютеры только начинали получать широкое распространение. Однако, как и в других областях (например, при предсказании землетрясений), улучшение технологий не компенсировало недостатка теоретического понимания экономики. По сути, компьютеры дали экономистам лишь более быстрые и продвинутые способы ошибочно принимать шум за сигнал. Модели, прежде казавшиеся многообещающими, в тот или иной момент терпели поражение и отправлялись в мусорное ведро{436}.
Свою роль в развитии искажений играют и человеческие суждения. Вы можете создать прогноз, который волшебным образом станет соответствовать вашим экономическим стимулам или политическим убеждениям. Вы можете возгордиться и не захотите изменить его, даже когда этого потребуют факты и обстоятельства. «Я думаю, что у людей есть одна тенденция, которой стоит активно противостоять, – сказал мне Хациус, – она заключается в том, что человек воспринимает информационный поток таким, каким он хочет его видеть». Но есть ли экономисты, которым удается лучше других управлять этим компромиссом? Можно ли считать, что экономист, правильно предсказавший рецессию в прошлом, сможет предсказать и будущую? На этот вопрос есть интересный ответ.
Когда мы, чтобы оценить умение прогнозировать, применили статистические методы анализа к данным SPF, результат оказался в целом негативным{437}.
Иными словами, при изучении результатов мы не можем сделать вывод о том, что некоторые экономисты обычно создают более хорошие прогнозы, чем остальные. Однако изучение прогнозов другой группы экспертов – от компаний «голубых фишек» (Blue Chip Economic Survey) – позволило получить более позитивные результаты{438}. Разумеется, в экономическом прогнозировании велика доля удачи: экономисты, которые последовательно защищают «медвежью» или «бычью» точку зрения, время от времени гарантированно будут правы. Однако исследования мнения экспертов «голубых фишек» показали, что некоторым из них действительно удается создавать лучшие прогнозы на долгосрочную перспективу.
В чем состоит разница между двумя опросами? Опрос SPF проводится анонимно: каждый экономист получает случайный номер, не меняющийся от опроса к опросу, однако у читателей нет никакой возможности понять, кто скрывается за тем или иным номером. В рамках опроса «голубых фишек» прогноз каждого участника подкрепляется его именем и репутацией.
Если рядом с прогнозом стоит ваше имя, это может привести к изменению структуры ваших стимулов. Допустим, вы работаете на малоизвестную компанию. В этом случае для вас может иметь смысл создавать достаточно дикие прогнозы – пусть они и не будут сбываться достаточно часто, но в случае успеха вам гарантировано должное внимание. С другой стороны, сотрудники компаний типа Goldman Sachs должны вести себя более консервативно, для того чтобы оставаться в рамках консенсуса.
Именно это и было выявлено в результате исследования прогнозов Blue Chip{439} – довольно заметное явление под названием «искажения из соображений рациональности»{440}. Чем менее известно ваше имя, тем меньше вы можете потерять, принимая на себя риски, связанные с прогнозами. Даже если вы знаете, что вы немного лукавите в своем прогнозе, для вас может иметь смысл попытаться сделать большую ставку. С другой стороны, если у вас уже имеется серьезная репутация, вы, возможно, не захотите слишком отклоняться от общей точки зрения, даже в том случае, когда, по вашему мнению, это следует из имеющихся данных.
Каждое из этих опасений, связанных с вашей репутацией, способно отвлечь вас от основной цели – создания наиболее честных и точных прогнозов. Несмотря на довольно незначительные различия, исторические данные по анонимным участникам SPF показывают, что им удавалось немного лучше предсказывать показатели ВВП и безработицы, чем участникам экспертов из «голубых фишек», заботящихся о своей репутации{441}.
Данный текст является ознакомительным фрагментом.