Принцип 1. Учитывайте вероятностность события

We use cookies. Read the Privacy and Cookie Policy

Принцип 1. Учитывайте вероятностность события

Почти все публикуемые мной прогнозы, как в политике, так и в других областях, являются вероятностными.

Вместо того чтобы «выплеснуть» одну цифру и утверждать, что я точно знаю, что произойдет далее, я показываю диапазон возможных результатов. Например, 2 ноября 2010 г. мой прогноз о возможном количестве мест республиканцев в Конгрессе США выглядел так, как показано на рис. 2.1.

Предполагалось, что наиболее вероятное количество мест, которое наберут республиканцы, находилось в диапазоне, перекрывающем почти половину всех возможных вариантов, – от 45 до 65 (в реальности они получили 63 места). Однако также имелась возможность выигрыша республиканцами 70 или 80 мест – но уж точно не предсказанной Диком Моррисом сотни. И существовала вероятность того, что демократы удержат достаточно мест для сохранения контроля над Конгрессом.

Рис. 2.1. Прогноз количества мест республиканцев в Конгрессе США на 2 ноября 2010 г. от FiveThirtyEight

Широкий разброс исходов выборов отражал неопределенность, присущую реальному миру. Прогноз был создан на основе индивидуальных прогнозов для каждого из 435 мест в Конгрессе – и в большинстве кампаний разрыв межу конкурировавшими кандидатами был минимальным. В результате судьба 77 мест в Конгрессе определялась разрывом голосов менее чем в 10 %{171}. Если бы демократы обогнали собственные прогнозы в самых конкурентных регионах всего на пару процентов, то смогли бы легко удержать за собой Конгресс. Если бы то же самое смогли сделать республиканцы, то превратили бы свою победу в невероятный триумф. Небольшие колебания политических течений могли бы привести к существенно иному результату; поэтому было бы глупо сводить описание происходящего к точной цифре.

Этот вероятностный принцип также сохраняется в случаях, когда я прогнозирую, чем завершатся отдельные кампании. Например, насколько велика вероятность выигрыша кандидата, если он, по итогам опросов, опережает конкурента на пять пунктов? Именно такие вопросы и призваны решать модели типа FiveThirtyEight.

Ответ на подобный вопрос в значительной степени зависит от типа гонки, в которую вовлечен кандидат. Чем ниже уровень выборов, тем более волатильными становятся результаты: данные опросов на предвыборной гонке в Конгресс менее точны, чем данные опросов при выборах в Сенат, а те, в свою очередь, менее точны, чем опросы перед выборами президента. Также считается, что, в целом опросы в ходе предварительных партийных выборов (праймериз) значительно менее точны, чем опросы в ходе общих выборов. Во время праймериз Демократической партии в 2008 г. средняя величина ошибки в данных опроса составляла около восьми пунктов – значительно больше, чем подразумевается при оценке ее погрешности. Проблема опросов в ходе республиканских праймериз 2012 г. была еще масштабнее{172}. Фактически во многих важных штатах – включая Айову, Южную Каролину, Флориду, Мичиган, Вашингтон, Колорадо, Огайо, Алабаму и Миссисипи – кандидат, лидировавший в ходе опросов за неделю до выборов, проигрывал гонку.

Однако опросы становятся более точными по мере приближения дня выборов. В табл. 2.3 представлены некоторые результаты, полученные с использованием упрощенной версии модели прогнозирования FiveThirtyEight для выборов в Сенат, использовавшей данные за период с 1998 по 2008 г. В модели рассчитывалась вероятность выигрыша кандидата на основе значения средней величины его опережения в ходе опросов. Допустим, кандидат в Сенат, имевший пятипроцентное опережение, выигрывал гонку в 95 % случаев – это было почти гарантировано, хотя пресса часто называла предвыборную гонку «непредсказуемой». Напротив, в случае преимущества в пять пунктов за год до выборов, шансы на победу составляют лишь 59 % – чуть лучше, чем при гадании с помощью подбрасывания монетки.

В подобных условиях ценность моделей типа FiveThirtyEight становится очевидной. Нет никаких проблем с тем, чтобы посмотреть на цифры, увидеть, что некий кандидат ведет по данным некоторых или всех опросов, и понять, что он является фаворитом (за некоторыми исключениями это предположение будет правильным). Гораздо сложнее понять, в какой мере он выступает фаворитом. Наши мозги, приученные находить закономерности, всегда пытаются найти в данных сигнал, хотя, на самом деле, вместо этого нам следует оценивать степень шума.

Таблица 2.3. Вероятность победы кандидата на выборах в Сенат, основанная на среднем показателе опережения в ходе опросов

Я привык именно к такому стилю мышления, а предпосылкой для него является опыт, приобретенный, когда я имел дело с двумя дисциплинами – спортом и покером, в которых вы, так или иначе, сталкиваетесь со всеми вариантами развития событий. Сыграв достаточное количество партий в покер, вы получаете некоторое количество комбинаций ройял-флэш. Стоит вам сыграть еще, и вы окажетесь в ситуации, когда у вас на руках будет фулл-хаус, а ройял-флэш придет вашему сопернику. В спорте, особенно бейсболе, также возникают события с низкой вероятностью. Так, команда Boston Red Sox не смогла выйти в плей-офф в 2011 г., несмотря на то что в какой-то момент ее шансы на это составляли 99,7 %{173}, – хотя лично я не стал бы спорить с человеком, считающим, что в случае Red Sox или Chicago Cubs обычные законы вероятности просто не работают.

Такое отсутствие определенности часто расстраивает политиков и политических обозревателей. В 2010 г. один конгрессмен-демократ позвонил мне за несколько недель до выборов. Он представлял довольно благополучный для демократической партии район на западном побережье.

Тем не менее, принимая во внимание, насколько хорошо шли в том году дела у республиканцев, он беспокоился, что может потерять свое место. Он хотел знать, насколько велика доля неопределенности в нашем прогнозе. При округлении наши цифры говорили ему о том, что вероятность его победы составляет 100 %… Однако что значили эти 100 % на самом деле – 99 % или 99,99 %, или же 99,9999 %? В первом случае, когда шансы проигрыша оценивались как 1 к 100 000, он был готов пожертвовать собранными на его кампанию средствами и передать их другим кандидатам, баллотировавшимся в более уязвимых районах. Однако он не был готов так поступить, если шансы на его проигрыш составляли 1 к 100.

Представители политических партий могут неправильно интерпретировать роль неопределенности в прогнозе; они относятся к ней как к своего рода страховке или возможному оправданию в случае, если предсказание оказывается неверным. Но дело заключается совсем в другом. Если вы прогнозируете, что некий конгрессмен будет выигрывать в 90 % случаев, то это также означает, что ему будет суждено проиграть в 10 % случаев{174}. Отличительный признак хорошего прогноза заключается в том, что каждая из этих вероятностей может реализоваться в долгосрочной перспективе.

«Ежи» Тэтлока очень плохо понимают суть этих вероятностей. Когда вы говорите, что вероятность того, что какое-то событие произойдет, составляет 90 %, то за этими словами имеется вполне конкретный и объективный смысл. Однако наши мозги превращают его в нечто более субъективное. Выводы психологов Даниэла Канемана и Амоса Тверски показывают, что такие субъективные оценки не всегда соответствуют реальности. У людей могут возникнуть проблемы при оценке различия между вероятностью благополучного приземления самолета, составляющей 90 %, и вероятностью в 99 % или даже в 99,9999 %. Хотя совершенно очевидно, что от этого напрямую зависит, стоит ли нам бронировать билет на самолет.

При наличии должной практики наша оценка может стать лучше. «Ежей» Тэтлока отличала высокая степень упрямства и неготовность учиться на своих ошибках. Признание присущей реальному миру неопределенности в прогнозах вынудило бы их признать неправильность своих теорий, касающихся должного поведения мира, а это – последнее, чего хотелось бы приверженцу той или иной идеологии.

Данный текст является ознакомительным фрагментом.