32 Энергия нашего будущего

We use cookies. Read the Privacy and Cookie Policy

32

Энергия нашего будущего

Материальный, а также интеллектуальный прогресс человечества впадает во всё большую зависимость от сил природы и энергии, которые он ставит себе на службу, хотя, строго говоря, количество потребляемой энергии не является надежным критерием благосостояния и просвещенности, оно заслуживает доверия в качестве индикатора степени безопасности, благополучия и комфорта, без которых род человеческий всё в большей мере подвергался бы страданиям, испытывал всё большую нужду, а цивилизация могла бы погибнуть.

В сущности, все используемые нами виды энергии происходят от Солнца, и нашим величайшим достижением в использовании его неугасающего огня является укрощение водопадов. Гидроэлектрический технологический процесс, ныне повсеместно используемый, дает нам возможность получать до восьмидесяти пяти процентов солнечной энергии с помощью элементарно простых установок, которые, при условии внедрения новейших технологий и изобретений, в течение столетий могли бы выдерживать проверку временем. Эти преимущества носят совершенно исключительный характер, в то время как во всех других способах преобразования сил природы мы сталкиваемся с серьезными препятствиями и неизбежными огромными потерями. Следовательно, в интересах всего мирового сообщества желательно, чтобы этот совершенный источник энергии использовался максимально. Судя по среднему уровню осадков, выпадающих на совокупную поверхность материков, суммарная энергия воды на планете теоретически может составлять десять миллиардов лошадиных сил. Конечно, лишь часть ее пригодна для практического использования, а это довольно мало — возможно, двадцать пять процентов в наиболее передовых странах, в других — меньше, а есть такие, где даже землю не пашут. Известно о существовании мощных водопадов во многих недосягаемых районах земного шара, обнаруживаются новые — все они в конечном счете будут укрощены, когда наладится беспроводная передача энергии. Как бы то ни было, есть основания надеяться, что в будущем ограничения в количестве доступной нам энергии могут быть устранены. Три четверти поверхности Земли занимает океан, и атмосферные осадки над этим обширным пространством бесполезны для нашего замысла. Предлагается много способов искусственного вызывания дождя, но ни один из них не дает и малейшей надежды на успех. Кроме того, до сих пор предлагалось осадкообразование лишь в ограниченном регионе, при этом общее количество влаги всей суши оставалось неизменным, кроме тех случаев, когда содержание влаги уменьшается в результате естественного свойства океана притягивать к себе всё больше и больше воды с континентов. По-настоящему важная проблема, которую нам необходимо решить, состоит не в том, чтобы вызвать осадкообразование в каком-либо отдельном районе, но направить этот естественный процесс в обратную сторону — притягивать водяные испарения морей и таким образом увеличивать по мере надобности количество атмосферных осадков, выпадающих над сушей. Осуществимо ли это?

Солнце поднимает воду на высоту, где она пребывает в состоянии тонкой взвеси до тех пор, пока некое возмущение относительно небольшой энергии не вызовет конденсацию в месте, где легче всего нарушается равновесие. Однажды начавшись, действо распространяется подобно пожару, поскольку образуется вакуум, и устремляющийся туда воздух, охлаждаясь в результате разрежения, усиливает дальнейшую конденсацию в прилегающих массах — облаках. Вся жизнь на земном шаре всецело зависит от этого исполинского пускового механизма природы. И мои дальнейшие наблюдения доказали, что комплексное воздействие молнии является в большинстве случаев главным регулирующим агентом. Эта теория, сформулированная мной в 1892 году, была подтверждена в проведенных позднее экспериментах с искусственными грозовыми разрядами длиной более 100 футов, согласно которым представляется возможным с помощью мощных энергетических установок, размещенных надлежащим образом [территориально] и подключаемых в должное время, перемещать неограниченные количества воды из океанов на континенты. Механизмы будут приводиться в действие благодаря водопадам, вся работа будет выполняться солнцем, тогда как мы должны будем просто приводить в действие пусковой механизм. Таким способом мы смогли бы извлекать достаточно энергии из падающей воды, чтобы удовлетворить все наши потребности. Более того, мы могли бы создавать новые озера и реки, стимулировать появление богатой флоры и фауны и превращать даже безводные пески в пустынях в тучную, плодородную почву.

Но эта идея очень далека от полной реализации. Труднопреодолимым препятствием является то обстоятельство, что до тех пор, пока не открыты новые источники, нашей главной опорой будет оставаться энергия, получаемая от горючих веществ. Термодинамический процесс является расточительным и нецивилизованным, особенно в условиях сжигания угля, добыча которого всё еще сопровождается бесчисленными трудностями и опасностями для тех горемык, которые обречены выполнять тяжелую работу глубоко в недрах земли. В этом и в других отношениях нефть и природный газ в огромной степени предпочтительнее, и их применение быстро распространяется. Однако совершенно очевидно, что такое расточительство не может продолжаться бесконечно долго, поскольку геологические изыскания доказывают, что наши топливные запасы ограниченны. В последние годы их потребление идет столь интенсивно, что призрак их опустошения грозно маячит впереди, инженерная и изобретательская мысль повсеместно работает над повышением эффективности уже известных способов и поиском новых источников энергии.

Природа предусмотрела более чем достаточный запас энергии в разнообразных формах, которыми можно было бы пользоваться, если преуспеть в разработке надлежащих средств и способов. Солнечные лучи, падающие на земную поверхность, являют собой количество энергии столь огромное, что лишь небольшая ее часть могла бы удовлетворить все наши потребности. При перпендикулярном падении лучей интенсивность [излучения] в механическом эквиваленте составляет около 95 футо-фунтов на квадратный фут в секунду, или почти 7 300 лошадиных сил на акр суши. В экваториальных регионах средняя годовая интенсивность составляет приблизительно 2 326, а в наших широтах — 1 737 лошадиных сил на ту же площадь. Применение нагрева для генерирования пара и работа турбины в условиях глубокого вакуума могли бы, вероятно, дать 200 лошадиных сил на акр полезной мощности в средних широтах. Это был бы весьма удовлетворительный результат, если бы не стоимость аппарата, которая значительно возрастает из-за необходимости применения аккумулирующей электростанции, способной выдерживать нагрузку почти три четверти срока.

Энергию световых лучей, составляющую около 10 % всего излучения, можно было бы улавливать, подвергая фотоэлектрические элементы низкотемпературному воздействию, что по причине чрезвычайно высокой эффективности этого процесса могло бы придать ему большое практическое значение в будущем. В этом направлении уже достигнут некоторый прогресс. Но на данный момент точные расчеты показывают, что солнечная энергия, извлекаемая даже в тропиках, не открывает больших возможностей для ее рационального использования. Существующие препятствия будут в значительной степени устранены, когда войдет в действие беспроводной способ передачи энергии. Тогда многие станции, расположенные в жарком поясе, могли бы оперативно объединяться в огромную сверхмощную систему для непрерывной подачи энергии в любые точки земного шара.

Солнце, однако, излучает особую, обладающую огромной энергией радиацию, которую я обнаружил в 1899 году. Двумя годами ранее я занимался исследованиями радиоактивности, в результате чего пришел к выводу, что наблюдаемые явления объясняются не молекулярными силами, свойственными веществу как таковому, но вызываются космическим излучением с исключительной проникающей способностью. То, что оно исходит от Солнца, очевидный факт, так как, несмотря на то, что многие небесные тела, несомненно, обладают подобным свойством, совокупное облучение, получаемое Землей от всех солнц и звезд вселенной, составляет лишь немногим более четверти одного процента того, что она получает от светила. Следовательно, искать космические лучи в другом месте — почти то же самое, что искать вчерашний день. Мое предположение поразительным образом подтвердилось, когда я обнаружил, что от Солнца действительно исходит излучение, замечательное непостижимо малой величиной составляющих его частиц и скоростью их движения, безмерно превышающей скорость света. Это излучение, сталкиваясь с космической пылью, генерирует вторичное излучение, сравнительно слабое, но явно обладающее проникающей способностью, интенсивность которого почти одинакова во всех направлениях. Ученые в Германии, проводившие исследования этого излучения в 1901 году, предположили, что оно исходит от звезд, и с тех пор выдвигается идея, что его первоисточником является только что открытое вещество, постоянно образующееся в межзвездном пространстве! Можно с уверенностью сказать, что нигде во вселенной нет такого места, где возможно такое вопиющее нарушение физических законов, как вода, текущая в гору. Возможно, когда-нибудь в будущем, когда мы овладеем неизмеримо более совершенными способами познания, мы изыщем пути овладения и использования этой силы для достижения результатов, находящихся за пределами наших теперешних представлений.

Потоки воды часто рассматриваются в качестве источника движущей энергии, и немало инженеров одобрительно высказывались относительно их использования. Но энергия потока в большинстве случаев в сущности незначительна, например, использование водопада в качестве источника энергии на один акр земли приносит лишь немногим более одной лошадиной силы. Только в исключительных местностях использование энергии потока может оказаться выгодным.

Проект гигантской электрической станции будущего, в основе работы которой лежит использование тепловой энергии Земли. Вода, циркулируя в трубе, доходит до ее дна и поднимается вверх в парообразном состоянии, пар приводит в движение турбину, а затем он опять превращается в жидкость, и этот круговой процесс повторяется всё время. Внутренняя тепловая энергия Земли огромна и практически неисчерпаема в сравнении с вероятными человеческими запросами; масса горячих слоев Земли измеряется секстиллионами тонн

Многие изобретатели мечтают научиться использовать энергию океанской волны, которая составляет немалую величину. Но, несмотря на то, что предлагается бессчетное число проектов и проявляется большая изобретательность в разработке механических способов, до сих пор не получено никакого результата, имеющего практическое значение, а с учетом технических сложностей и изменчивой природы этого источника энергии перспективы ничтожны.

Нам гораздо легче поставить себе на службу силу ветра, ведь она находит практическое применение с незапамятных времен. Она неоценима как движущая сила для судов, а ветряную мельницу следует всерьез считать генератором энергии. Если себестоимость этого продукта массового спроса будет существенно снижена, мы, вероятно, будем лицезреть страны, сплошь покрытые этими освященными веками устройствами.

К сожалению, ценность всех этих источников энергии в очень большой степени снижается по причине периодических и бессистемных колебаний, и мы вынуждены искать источник постоянной и круглосуточно поступающей энергии, сравнимой с энергией водопада. Таким образом, мы склонны рассматривать земную теплоту в качестве возможного источника постоянного энергоснабжения.

В соответствии с грандиозным проектом, представленным на этой иллюстрации, энергия забирается из морских глубин. Теплота поверхностного слоя, вступающего во взаимодействие с другим, холодным, слоем, используется для получения энергии, приводя таким образом в действие крупные электрические станции. В этой чрезвычайно важной статье представлен анализ перспектив практического осуществления замысла, а также теоретические основы функционирования [установки]

Заслуживает внимания тот факт, что еще в 1852 году лорд Кельвин обратил внимание на естественную теплоту как на источник энергии, доступный человечеству. Но вопреки своему правилу обращаться к сути каждого предмета своих исследований он довольствовался всего лишь предположением. Впоследствии, когда сложилось представление о законах термодинамики, стали часто рассматриваться перспективы использования разницы температур в океане, в твердом грунте или атмосфере. Известно, что в тропических морях разница температуры воды на поверхности и на глубине трех метров составляет 50° по Фаренгейту. Температура верхнего слоя подвержена изменениям и достигает в среднем 82° F, в то время как температура глубинных слоев обычно составляет как минимум 32° F или около того, что является результатом постепенного притока очень холодного полярного течения. В земле, твердом теле, это соотношение имеет обратную зависимость: температура повышается примерно на один градус по шкале Фаренгейта через каждые 64 фута углубления в недра земли. Известно об очень больших температурных расхождениях в атмосфере, где она снижается по мере удаления от поверхности земли в соответствии со всем комплексом происходящих в ней процессов.

Но несмотря на то, что это было общеизвестно в течение по крайней мере 75 лет, а использование теплоты Земли для получения энергии было предметом глубоких исследований, никакой решительной попытки ее использования не было предпринято до тех пор, пока некий американский инженер, имя которого я не в состоянии выяснить, не предложил заставить двигатель работать на паре, генерируемом в глубоком вакууме из теплого поверхностного слоя воды и конденсируемого холодной водой из глубин. Такой проект, в полном объеме и тщательно разработанный, подкрепленный чертежами и расчетами, он представил на рассмотрение видным капиталистам и бизнесменам Нью-Йорка около 50 лет тому назад. Он не только предполагал производство и распределение энергии для всеобщего потребления, но даже планировал приводить в движение суда с помощью энергии, получаемой таким способом, где в качестве рабочей жидкости предпочтительнее применять эфир. По причине его смерти или по другим причинам проект не был доведен до практического осуществления. Об этом я узнал намного позже, когда заинтересовал своим проектом переменного тока Альфреда С. Брауна, известного технического специалиста, приглашенного для оценки достоинств моих изобретений, и К.-Ф. Пека, знаменитого юриста, который создал компанию для их промышленного внедрения. Эти люди были одними из первых, к которым инженер обратился [в свое время] с предложением и которые сочли его проект целесообразным в принципе, но трубопроводы, насосы, двигатели, паровые котлы и конденсаторы требовали слишком больших затрат, и, кроме того, практически полезное размещение энергетической установки оказалось трудным вопросом, оставшимся без определенного ответа. Мое открытие вращающегося магнитного поля привело к изменению ситуации и отношения к ней с их стороны. Они полагали: если с помощью моей установки можно будет осуществлять рентабельную передачу энергии в отдаленные места, а стоимость океанской станции будет в значительной мере снижена, этот неисчерпаемый источник энергии можно успешно использовать. У г-на Пека были влиятельные знакомства, среди его клиентов был Джон С. Мур, основатель банкирского дома, носящего его имя. За исключением недавно умершего Дж. П. Моргана, который превосходил всех на Уолл-стрит и возвышался над другими людьми, подобно Самсону над филистимлянами, Мур был, вероятно, чрезвычайно сильной личностью. Мне дали понять, что если я смогу разработать проект, который удовлетворит г-на Брауна и других инженеров, то весь необходимый для этого широкомасштабного предприятия капитал будет безотлагательно предоставлен. Моим компаньонам не было нужды уговаривать меня взяться за решение этой задачи, так как идея с самого начала выглядела многообещающей, несмотря на то, что в этом не было ничего фундаментально нового.

Важнейшие условия, необходимые для работы паровой или другой термодинамической машины, были выполнимы, значительная разница температур имелась в наличии в любое время. Не было нужды в предъявлении доказательств того, что теплота будет непрерывно поступать с более высокого уровня на находящийся ниже и преобразовываться в механическую работу. Не требовалось также доказательств того, что вода поверхностного слоя, температура которого значительно ниже ее обычной точки кипения, равной 212° F, может с легкостью превращаться в пар под воздействием вакуума, вызывающего закипание при любой температуре, какой бы низкой она ни была. Общеизвестно, что вследствие того же фактора на высокогорье невозможно сварить бобы и яйца вкрутую. По той же причине выходят из строя турбины на паровых энергетических установках, в которых полностью отключаются котлы, когда слегка теплая вода в системе соединительных труб закипает под воздействием неосторожно примененного вакуума. Такое поведение воды, или вообще всякого рода жидкости, было прекрасно проиллюстрировано в широко известном устройстве, названном криофор, состоящем из двух сообщающихся сосудов, из которых откачан воздух и частично заполненных жидкостью, она выпаривается в одном сосуде и конденсируется в другом. Это изобретение принадлежит В.-Г. Вулластону, крупному английскому ученому и исследователю, впервые освоившему промышленное производство платины и имевшему в среде некоторых ученых репутацию открывателя (еще до Фарадея) вращения электромагнитного поля. В первом приборе, представленном в начале девятнадцатого века, один из сосудов был заполнен льдом, чтобы замораживать воду в другом. Согласно взглядам того времени бытовало мнение, что холод льда переносился на воду, поэтому прибору было дано греческое название, означающее «носитель холода». Но теперь мы знаем, что процесс протекает в противоположном направлении: охлаждение осуществляется путем переноса теплоты при парообразовании от теплого сосуда к холодному. Вы, естественно, придете к заключению, что процесс прекратится, как только замерзнет вода на поверхности, но, как ни странно, сам лед продолжает производить пар, и это именно то, отчего вся вода кристаллизуется. Можете представить, каким загадочным казался этот феномен более века тому назад!

Океанская электростанция, предложенная инженером, была не чем иным, как устройством Вулластона огромных размеров, приспособленным к непрерывной работе и имеющим двигатель, помещенный между двумя сообщающимися сосудами. Оценивая его термодинамические характеристики, я с блокнотом и карандашом в руках сразу же получил результаты, которые в какой-то степени привели меня в замешательство. Чтобы получить наглядное представление, предположим, что равные количества теплой и холодной воды, скажем, по полфунта, с температурой соответственно 82° и 32° по шкале Фаренгейта смешаны или приведены к одинаковой температуре другим способом. Тогда первая отдает второй 12,5 тепловых единиц, механический эквивалент которых равен 9 724 футо-фунтам — такое же количество работы было бы произведено при падении тела массой в один фунт с высоты, достигающей 9 725 футов. Мечтой моей жизни было использовать Ниагарский водопад в качестве источника электроэнергии, но здесь водопад был в шестьдесят раз выше и имел бесконечно большую массу. Чтобы поднять холодную воду на поверхность, какова бы ни была глубина, требовалось лишь незначительное усилие, и, поскольку другие расходы также представлялись ничтожно малыми, я пришел к заключению, что если только небольшая часть этого гипотетического водопада могла быть использована, то одна из величайших проблем, стоящих перед человечеством, была бы решена на все грядущие времена. Я понимал, что это было бы слишком хорошо, чтобы быть истиной, но все же в течение ряда лет преследовал эту призрачную надежду, пока постепенно, путем вдумчивых рассуждений, расчетов и экспериментов я не нашел твердую точку опоры в трясине своего неведения и сомнения. Тогда этот план использования океана для получения энергии открылся моему сознанию во всей его незрелости, какую только можно вообразить. Только для перемещения небольшого количества теплоты вода должна накачиваться и сбрасываться в количествах столь огромных, что крупная установка такого типа привела бы к новым проблемам в разработке и эксплуатации. Вопреки мнению, которое я ранее сформулировал, это повлекло бы за собой затраты огромного количества энергии. Затем я понял, что содержащиеся в воде газы могут быть извлечены лишь частично, и их придется постоянно удалять из конденсатора, чтобы предотвратить повышение противодавления, которое может снизить скорость и в конечном счете остановить двигатель. Кроме того, вследствие определенного рода обстоятельств вода из глубины моря будет поступать в трубу более теплой, чем она должна быть (по причине недостаточной глубины), так что разница температур в полной мере не может быть достигнута. Я обнаружил и другие специфические процессы, которые с течением времени могли бы серьезно повлиять на правильное функционирование механизма. Пар, добытый с поверхности воды, крайне низкого качества, это просто легкий туман под низким давлением, и его расход на выработку одной лошадиной силы в час должен быть, вероятно, в двадцать раз больше, чем на современных силовых установках. Как указывалось выше, на гидроэлектростанциях может быть задействовано восемьдесят пять процентов энергии падающей воды, в то время как в данном случае может быть использовано едва ли более двух десятых одного процента гипотетического напора воды. Хуже всего то, что размер и стоимость оборудования совершенно несоразмерны с максимально возможной отдачей. Я не мог не обратить внимания на эти и другие лимитирующие обстоятельства и трудности, когда занимался изучением проектов, как сначала и предполагалось.

Появление моей установки переменного тока положило начало борьбе за лучшие площадки для гидросиловых установок, и не было предпринято ни одной попытки использования океана в качестве источника энергии. У меня же это вызывало такой большой интерес, что я продолжил исследования и внес ряд усовершенствований, которые, думается, обладают рядом достоинств. Убежденный в том, что удерживать трубы с помощью буев или подвешивать их в морской бездне неосуществимо, я предложил использовать наклонный туннель с теплоизоляцией, что обеспечивало беспрепятственное и непрерывное прохождение воды из глубины моря. Я нашел способ упрощения и удешевления аппарата и повышения его эффективности, восстанавливая влажность пара и используя другие приемы, и эти усовершенствования со временем могут иметь практическое значение.

Ил. 1. Криофорный исследовательский аппарат, объясняющий принципы технологии замораживания

Чтобы облегчить понимание процесса развития океанской энергетической установки по системе криофора и природы некоторых из моих усовершенствований, можно воспользоваться чертежом, в котором иллюстрация 1 представляет первоначальный аппарат Вулластона, состоящий из двух вакуумных камер В и С, соответственно, парового котла и конденсатора, которые соединены посредством канала А. При условии, что первая из названных камер частично наполнена водой или другой жидкостью, а вторая помещена в охлаждающую смесь, вакуум вызовет бурное кипение слегка теплой воды, и будет наблюдаться общеизвестный эффект. Поскольку пар, генерируемый в котле, устремляется в конденсатор с огромной скоростью, он способен производить значительную механическую работу.

Ил. 2. Общий план установки, в которой при прохождении пара между двумя емкостями, имеющими разную температуру, приводится в движение якорь электрического генератора

Иллюстрация 2 показывает, как может осуществляться термодинамическое преобразование энергии для ее использования вовне. Предпочтение отдано именно такой особой компоновке, чтобы освободиться от необходимости подсоединения к внешней поверхности, что потребовало бы применения вакуумного насоса. Стальной ротор а почти такого же диаметра, что и диаметр канала А, соединяющий камеры В и С и имеющий профили в виде лопастей, закреплен на подшипниках качения b и с, практически не имеющих трения, конструкция последних предусматривает гашение ударов. Вокруг ротора турбины, в непосредственной близости к нему расположены выступы d и e из мягкого железа с обмотками f и g, представляющие собой часть постоянного магнита h. В результате быстрого вращения ротора возникает периодическое смещение магнитных силовых линий от одной до другой пары выступов, индуцируя таким образом в катушке токи, которые можно использовать.

Следующий шаг состоит в том, чтобы наладить непрерывную работу аппарата. Этого можно достигнуть двумя способами: путем подачи пара и конденсата непосредственно к камерам В и С или просто через передачу и извлечение теплоты через их стенки, и в этом случае рабочая жидкость полностью отделена и циркулирует по замкнутой цепи.

Ил. 3. Более точный эскиз термодинамической установки, в которой всасывающий насос E создаст необходимую степень вакуума

Общий вид представлен в виде схемы на иллюстрации 3. Цилиндрические камеры В и С соединены соответствующими трубопроводами. Всасывающий насос E, рассчитанный на создание очень высокого вакуума, присоединен к конденсатору С и может приводиться в движение турбиной посредством зубчатой передачи или, как указано, асинхронным двигателем, работающим на переменном токе, который подается от динамо-машины F, имеющей общий привод с турбиной. Вода, находясь под атмосферным давлением, потечет в вакуумные камеры со слишком большой скоростью, вызывая связанные с этим потери, и поэтому необходимо подавать и отводить ее посредством компенсирующих барометрических столбиков ii и kk достаточной высоты, обеспечивая тем самым требуемую циркуляцию, направление которой указано стрелками. Поскольку латентная (остаточная) теплота, поглощенная в процессе испарения и освобожденная в процессе конденсации, очень велика, через камеры должно пройти очень большое количество воды, чтобы не допустить изменений температуры, которые могут значительно снизить эксплуатационные качества аппарата. Кроме того, в представленных аппаратах необходимо использовать газоотделители для извлечения газов из воды перед тем, как она попадет в паровой котел и конденсатор. Здесь нельзя применять сепараторы центробежного типа, так как это повлечет за собой слишком большие потери энергии. Единственно возможным является тип, который применялся во времена зарождения современной гидравлики, действие которого основано на постепенном реверсировании направления потока и который осуществляет лишь частичную дегазацию. Необходимо отметить, что при быстром расширении и одновременном охлаждении газы чрезвычайно ухудшают качество пара, а также в некоторой степени снижают вакуум в камерах. В одной из моих модификаций вода подается через форсунку, как показано, что обеспечивает необходимое испарение и конденсацию, в то же самое время убирает газы, которые оказались бы в свободном состоянии, если бы вода поступала обычным способом.

Ил. 4. Вода или какая-либо другая жидкость приводит в действие турбину D внутри замкнутой системы, циркулируя через конденсаторы, погруженные в воду с разными температурами

Тщательное изучение проекта, представленного на иллюстрации 3, убедило меня, что он по целому ряду причин невыгоден и не так практичен, как проект, представленный на иллюстрации 4. В этом случае камеры В и С являются поверхностным конденсатором обычной конструкции, но с очень большой активной поверхностью, принимая во внимание чрезмерный расход пара и небольшую разницу рабочих температур. Они могут быть одного размера, поскольку, хотя передача тепловой энергии от горячей воды к холодной происходит через пар, здесь действует закон смесей и максимальная передача происходит при условии равного количества той и другой воды. Если бы не это, эксплуатационные качества можно было бы существенно улучшить путем подачи горячей воды, которая должна проходить лишь по коротким трубам, в большем количестве. Камеры соединяются через турбину D, соединенную общим приводом с генератором F, как и раньше, и, кроме всасывающего насоса E, используется глубинный для нагнетания конденсата в паровой котел. Вода должна быть пресной и тщательно дегазированной для получения пара высокого качества, что весьма облегчит работу насосов, а паровой котел и конденсатор должны быть полностью погружены в циркулирующую среду, чтобы минимизировать тепловые потери. Существенные реальные преимущества этого проекта состоят в том, что можно использовать любую подходящую рабочую жидкость и агрегаты очень большой производительности.

Технические эксперты, которые, возможно, рассмотрят достоинства проекта океанской силовой установки, будут склонны не обращать внимания на затраты энергии, идущей на продвижение горячей и холодной воды, которые в действительности могут быть весьма значительными с учетом подъема океанской воды выше среднего уровня. Выходные отверстия неизбежно очень велики, и если их центры находятся на высоте от трех до четырех футов над средним уровнем океана, то для нормального функционирования во время прилива потери при перекачке будут значительными. Более того, движение воды подвергается многократным изменениям как в направлении, так и в скорости и испытывает потери тепла при трении, особенно в длинном трубопроводе, что в совокупности может сравниться с затратами на дополнительный подъем на несколько футов, что может составить, скажем, 7 футов, если прикинуть с большим запасом. Так вот, в Мексиканском заливе, в кубинских территориальных водах, где мои компаньоны предполагали построить силовые установки, среднегодовая разность температур горячей и холодной воды вряд ли превысит 36° F, а с паром низкого качества, который можно получить в таких условиях, прокачка воды может составить 12 футов в секунду на каждую лошадиную силу. Следовательно, механическая работа может, согласно расчетам, составить 168 футо-фунтов в секунду, и это число необходимо увеличить почти в два раза, потому что общий КПД всасывающих с приводом от двигателя насосных блоков, которые придется здесь применять, как правило, едва превышает пятьдесят процентов. Поскольку на одну лошадиную силу затрачивается 550 футо-фунтов в секунду, это означает потерю около 40 процентов. Кроме того, работа дегазаторов, вакуумных и глубинных насосов потребует энергии, которую придется брать от турбогенератора и почти в двойном количестве по указанным выше причинам. Все эти потери можно уменьшить различными способами, но ненамного, и этот пример наглядно показывает, что от них при желании можно полностью избавиться. Этот аргумент применим и даже более убедителен в отношении себестоимости насосного оборудования, общее представление о котором я попытаюсь передать, основываясь на том, что монтаж силовой установки мощностью 30 000 лошадиных сил требует не менее 300 000 фунтов горячей и холодной воды в секунду, что означает приблизительно по 4 700 кубических футов каждой. Поскольку скорость 3 фута в секунду вряд ли будет достигнута, два насоса, отвечающие этим требованиям, будут иметь заборные и выходные отверстия площадью в 1 800 квадратных футов с обычными допусками. Очевидно, что такие исполинские механизмы неприменимы по той причине, не говоря о других, что высота всасывания будет очень велика, а сопутствующие этому потери чрезмерными. Это выявляет неприемлемость схемы, представленной на иллюстрации 3, т. е. очень большие блоки не позволят добиться практических преимуществ. Вероятно, необходимо огромное количество малых блоков, и из этого следует, что чем масштабнее силовая установка, тем она менее практична. Вместо двух насосов, каждый из которых имеет отверстия в 1 800 квадратных футов, пришлось бы применять, при ошеломляющих затратах, по крайней мере сотню насосов с приводом от мотора, с отверстиями площадью 36 квадратных футов и соответствующим количеством паровых котлов и конденсаторов с огромными впускными и нагнетательными трубами.

Ил. 5. Прилив наполняет резервуары H и I, а поток обратного течения опорожняет их, экономя большое количество энергии, потребляемой насосами

Эти и другие подобные размышления побудили меня разработать проект, представленный в виде схемы на иллюстрации 5, в котором я полностью исключаю водяные насосы, делая расчет на отливы и приливы, которые осуществляют необходимую циркуляцию теплоносителя и хладоносителя и упрощают таким образом энергоблок, что избавляет от больших потерь и затрат. Установка включает в себя два очень больших резервуара, обозначенных как Н и I. Они обложены теплоизоляционной футеровкой и снабжены соответствующими опорами, которые поддерживают теплоизоляционные своды, или крышки, предназначенные для минимизации потерь при оттоке и притоке теплоты, соответственно, от теплой воды к холодной. Каждый из резервуаров имеет регулируемые отверстия К и L, расположенные около днища, где также находятся паровой котел В и конденсатор С. Последние соединены посредством турбины D, имеющей общий привод с генератором F, образуя блок большой мощности. Как и в описанном выше случае, предусмотрены всасывающий насос E и глубинный насос G с приводом от асинхронных двигателей, получающих питание от генератора. Все эти механизмы размещаются на едином фундаменте, как это и указано. Резервуары наполняются при полном приливе, а слив во время отлива регулируется, с тем чтобы обеспечивать наилучший режим работы. Хотя производительность подвержена периодическим изменениям, силовая установка может удовлетворительно работать, не нуждаясь в батареях или других аккумулирующих устройствах, и в результате себестоимость вырабатываемого продукта может быть значительно снижена.

Ил. 6. Плавучая термоэлектрическая станция, где конденсатор С подвешен ниже нагревательной камеры В, и конденсат циркулирует вертикально

Другой способ получения энергии благодаря разности температур в океане без применения водяных насосов представлен на иллюстрации 6. Аппарат состоит из тех же основных частей, что были описаны выше, а именно из цилиндрического парового котла В и такой же формы конденсатора С, соединенных посредством турбины D, которая приводит в действие генератор F, высоковакуумный насос E и небольшой возвратно-поступательный глубоководный насос G для подъема конденсата из конденсатора в паровой котел. Последний удерживается в теплом поверхностном слое воды с помощью плавучей конструкции, несущей всё оборудование, в то время как первый из названных насосов подвешен на соответствующей глубине в холодной воде. Эти оба узла снабжены трубами, расположенными вертикально, обеспечивая хорошую циркуляцию тепло- и хладоносителей. Такая компоновка чрезвычайно проста и эффективна, но на подъем конденсата с помощью насоса G требуется значительное количество работы. Я разработал беспроводные энергетические блоки на базе этого проекта, преследуя осуществимые цели, но они, возможно, найдут полезное применение в будущем.

Ил. 7. Общий вид части судна, приводимого в движение энергией, которая генерируется благодаря разнице температур воды. Пояснения к условным обозначениям элементов конструкции приведены в тексте

Иллюстрация 7 представляет изображение части судна с оборудованием для приведения его в движение исключительно тепловой энергией, извлекаемой из воды. Я не располагаю информацией, каким образом намеревался приводить в движение свое судно американский инженер, но представленный здесь проект — мой. Два ротационных насоса М и N нагнетают соответственно теплую и холодную воду в трубы парового котла В и конденсатора С. Этот узел помещается немного ниже поверхности воды для минимизации потерь, связанных с циркуляцией тепло- и хладоносителей. Насосы рассчитаны на работу от привода асинхронного электродвигателя, как представлено на схеме, и соединены со спускными трубами и другими элементами схемы таким образом, чтобы вода не могла поступать в трюм судна. Заборник парового котла находится вблизи поверхности океана, в то время как заборное устройство конденсатора опущено на необходимую глубину, при этом для осуществления этой функции предусмотрен трубопровод О, имеющий открытое входное отверстие и совпадающий по форме с линией обтекания. Хотя температура воды очень быстро снижается по мере удаления на определенное расстояние от поверхности океана, возможно получение достаточного количества энергии из воды при условии использования трубопровода пятидесяти футов длиной, чтобы привести судно в движение с помощью выбросов водяных струй из спускных труб. Не потребуется никакого иного гребного средства и возможно даже осуществлять рулевое управление путем соответствующего регулирования объема выброса в двух потоках за кормой. Турбина D, генератор F, высоковакуумный насос E, глубинный насос G и другие блоки выполняют те же функции, что и раньше. Необходимо предусмотреть некоторый запас энергии для запуска вакуумного насоса, а через его посредство и всего механизма.

Проект океанской силовой установки представляется весьма привлекательным, если принять во внимание тот факт, что получаемая энергия пропорциональна количеству нагнетаемой воды и поэтому практически неограниченна. Но следует помнить, что об истинных достоинствах этого проекта можно судить лишь по результатам. Мы располагаем еще более значительными и гораздо более доступными ресурсами, которые не используются по причине их нерентабельности. При глубоком изучении вопроса вскрываются многие удручающие обстоятельства. Глубоководные моря имеют, как правило, низкую температуру, но в любое время может образоваться теплое течение и сделать электростанцию бесполезной. Результаты наблюдений говорят о том, что на одной и той же глубине разница температур может достигать 35° F или даже больше. Подобно тому, как конвекционные токи возникают в атмосфере, они могут генерироваться и в океане, и это всегда представляет настоящую угрозу предприятию такого рода. Из этого также следует, что фактически доступная разница температур всегда будет существенно меньше, чем она могла бы быть, расчитанная на основании измерения глубины эхолотом. Подъем более плотной воды из нижних слоев в находящиеся выше определенного уровня менее плотные слои предполагает выполнение работы, которую должен совершать насос, но это не дает потерь, так как, соответственно, увеличивается объем воды, выбрасываемой из верхней части глубоководного трубопровода. Это правило не срабатывает с водой, находящейся выше упомянутого уровня, и в результате большая часть воды втекает в заборное отверстие трубопровода сверху, то есть в направлении идущего вниз конвекционного потока. Вследствие этого теплая вода поступает сверху в заборное отверстие и тем самым уменьшает разницу температур. Нельзя не придавать значения и другому любопытному обстоятельству. Море густо заселено живыми организмами (микроорганизмами), которые претерпевают изменения, вызываемые возрастом. По мере их старения естественный жизненный процесс вырабатывает всё более и более твердое вещество, они становятся тяжелее и постепенно погружаются всё глубже, пока жизнь в конце концов не прекращается на огромной глубине. Если бы эту плавучую массу можно было удалять, как воду, с помощью насоса, работающего в постоянном режиме, она доставляла бы нам сравнительно мало хлопот. Но поскольку откачивается вода, концентрация этого вещества постоянно возрастает и может стать такой большой, что создаст серьезные помехи в работе энергетической установки. Причинами ухудшения эксплуатационных качеств, если не приостановки работы, могут быть также коррозия и отложения в трубах, расшатанные соединительные муфты и другие поломки, и поэтому я считаю, что реальным способом перемещения холодной воды является туннель.

Я внимательно и всесторонне изучил этот способ получения энергии и разработал механизм снижения всех потерь до уровня, который я мог бы определить как не поддающийся уменьшению минимум, и все же я нахожу коэффициент полезного действия слишком небольшим, чтобы иметь возможность успешно конкурировать с современными способами.

Использование разницы температур в твердом теле Земли сулит значительные преимущества. В этом случае отпала бы необходимость отправляться в тропики, где энергия так мало значит. Безусловно, чем холоднее климат, тем лучше. В центре густонаселенного района можно пробурить шахту, и это даст огромную экономию в затратах на распределение [энергии]. Шахта будет, конечно, дорогостоящей, но оборудование будет дешевым, простым и эффективным. Иллюстрация 7 представляет его основные компоненты, включающие паровой котел B, находящийся на большой глубине, конденсатор С, охлаждаемый рекой или другой доступной водой и размещаемый на поверхности, турбину D, соединенную с генератором F, и высоковакуумный насос E с приводом от электродвигателя. Пар, или газообразное состояние воды, генерируемой в котле, подается на турбину и конденсатор посредством основного изолированного трубопровода, тогда как второй, меньший, трубопровод, тоже с теплоизоляцией, служит для подачи конденсата в котел под действием силы тяжести. Чтобы сделать доступными неограниченные запасы энергии повсюду в мире, единственно, что необходимо, — найти какой-либо экономичный и быстрый способ проходки шахтных стволов.

Будем ли мы рассчитывать на энергию, извлекаемую из земной теплоты, покажет будущее. Если мы истощим наши нынешние природные ресурсы, не найдя новых, то, возможно, встанет вопрос о применении этого способа. Нет сомнений, что наши запасы угля и нефти будут в конечном счете полностью использованы, а гидроресурсов для получения энергии недостаточно, чтобы удовлетворить наши потребности. Идея получения движущей энергии из атомов или в результате модификации элементов является антинаучной и иллюзорной, и этот приговор не может считаться слишком категоричным даже в том случае, когда энергия, как говорят в последнее время, будет якобы высвобождаться при температурах, достигающих 40 000 000 градусов С. Принципиальная ошибка во всех этих проектах состоит в том, что на расщепление уйдет больше энергии, чем можно будет вернуть, даже при идеально протекающем процессе.

Вызывающе иллюзорные теории несут ответственность за появление таких несбыточных надежд. Наихудшей из них является, вероятно, электронная теория. Из четырех или пяти предложенных теорий строения атома ни одна не является вероятной. Не более одного из тысячи ученых имеют представление о том, что электрон — каков бы он ни был — может существовать лишь в идеальном вакууме межмолекулярного и межзвездного пространства или в трубках с чрезвычайно глубоким вакуумом и что ядро, лишенное электронов, не имеет энергии.

Уже много лет тому назад мне было ясно, что для удовлетворения постоянно возрастающих потребностей человечества должен быть найден новый и лучший источник энергии. В лекции, прочитанной перед Американской ассоциацией электротехников в Колумбийском университете 20 мая 1891 года, я сказал: «Мы мчимся сквозь беспредельное пространство с непостижимой скоростью, повсюду всё около нас вертится, движется, везде есть энергия. У нас обязательно должна появиться возможность использования этой энергии более прямым путем [без промежуточных ступеней]. Тогда, имея свет, добытый из окружающей среды, электроэнергию, полученную из нее же, все виды энергии, получаемые без усилий из никогда не иссякающих запасов, человечество будет гигантскими шагами продвигаться по пути прогресса».

Преследуя эту цель, я упорно размышлял и работал, и мне доставляет удовольствие засвидетельствовать, что я располагаю достаточным количеством теоретических и экспериментальных данных, если не сказать с уверенностью, что мои многолетние усилия будут вознаграждены, и мы будем иметь в своем распоряжении новый источник энергии, превосходящей даже гидроэлектрическую, которую можно будет получать с помощью несложных аппаратов везде и почти в неизменном и неограниченном количестве.

«Everyday Science and Mechanics», декабрь, 1931 г.

Данный текст является ознакомительным фрагментом.